"I am Back" says Integration Part 8

Calculus Level 5

x e n x e e 2 x d x \large \int_{-\infty}^{\infty}{xe^{nx}e^{-e^{2x}} \, dx }

For positive constant n n , the above integral can be expressed as a b Γ ( n c ) ψ ( n d ) , \dfrac{a}{b} \Gamma{\left( \dfrac{n}{c} \right)} \psi{\left( \dfrac{n}{d} \right)},

where a , b , c a,b,c and d d are positive integers with a , b a,b coprime. Find a × b × c × d a \times b \times c \times d .

Notations :


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aareyan Manzoor
Feb 15, 2016

Substitute \begin{array} {10}e^{2x}=t\to x=\dfrac{\ln(t)}{2}\\ dt= 2e^{2x} dt\\ \mid_{-\infty}^\infty \to \mid_0^\infty\end{array} The integrand becomes: 1 4 0 ln ( t ) t n / 2 1 e t dt \dfrac{1}{4}\int_0^\infty \ln(t)t^{n/2-1} e^{-t} \text{dt} Consider the gamma functions: Γ ( a ) = 0 t a 1 e t dt \Gamma(a)=\int_0^\infty t^{a-1}e^{-t}\text{dt} d.w.r.a Γ ( a ) = 0 ln ( t ) t a 1 e t dt \Gamma'(a)=\int_0^\infty \ln(t) t^{a-1} e^{-t}\text{dt} put a=n/2 and divide by four 1 4 Γ ( n / 2 ) = 1 4 0 ln ( t ) t n / 2 1 e t dt \dfrac{1}{4}\Gamma'(n/2)=\dfrac{1}{4} \int_0^\infty \ln(t)t^{n/2-1} e^{-t} \text{dt} We have 1 4 Γ ( n / 2 ) = 1 4 Γ ( n / 2 ) Γ ( n / 2 ) Γ ( n / 2 ) = 1 4 ψ ( n / 2 ) Γ ( n / 2 ) \dfrac{1}{4}\Gamma'(n/2)=\dfrac{1}{4}\dfrac{\Gamma'(n/2)}{\Gamma(n/2)}\Gamma(n/2)=\dfrac{1}{4}\psi(n/2)\Gamma(n/2)

Moderator note:

Great explanation that shows how to generalize the expression.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...