I am Floored!

Algebra Level 4

x x x x x = 122 \large x \lfloor{x \lfloor{x \lfloor{x \lfloor{x\rfloor}\rfloor}\rfloor}\rfloor}=122

x x can be written in the form a b \dfrac{a}{b} , where a a and b b are coprime positive integers. What is a + b a+b ?

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 163.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Oct 24, 2018

Note that x > 122 5 2.614 x > \sqrt[5]{122} \approx 2.614 and 3 3 3 3 3 = 3 5 = 243 3 \lfloor{3 \lfloor{3 \lfloor{3 \lfloor{3\rfloor}\rfloor}\rfloor}\rfloor}=3^5 = 243 . For x x x x x = 122 x \lfloor{x \lfloor{x \lfloor{x \lfloor{x\rfloor}\rfloor}\rfloor}\rfloor}=122 2.614 < x < 3 \implies 2.614 < x < 3 , x = 2 \implies \lfloor x \rfloor = 2 . Then we have:

x x x x x = 122 Let positive integer n = x x x x ( 2 + { x } ) n = 122 2 n + { x } n = 122 \begin{aligned} x \color{#3D99F6} \lfloor{x \lfloor{x \lfloor{x \lfloor{x\rfloor}\rfloor}\rfloor}\rfloor} & = 122 & \small \color{#3D99F6} \text{Let positive integer }n = \lfloor{x \lfloor{x \lfloor{x \lfloor{x\rfloor}\rfloor}\rfloor}\rfloor} \\ (2+\{x\})\color{#3D99F6} n & = 122 \\ 2n + \{x\}n & = 122 \end{aligned}

Since 2.7 < x < 3 2.7 < x < 3 and n = 122 2 + { x } n = \dfrac {122}{2+\{x\}} , 41 n 45 \implies 41 \le n \le 45 . Taking n = 41 n=41 , { x } = 122 2 n n = 40 41 \{x\} = \dfrac {122-2n}n = \dfrac {40}{41} , x = 122 41 \implies x = \dfrac {122}{41} , then we have:

x x x x = 122 41 122 41 122 41 122 41 Note that 122 41 = 2 = 122 41 122 41 244 41 244 41 = 5 = 122 41 610 41 and 610 41 = 14 = 1708 41 = 41 = n \begin{aligned} \lfloor{x \lfloor{x \lfloor{x \lfloor{x\rfloor}\rfloor}\rfloor}\rfloor} & = \left \lfloor \frac {122}{41} \left \lfloor \frac {122}{41} \left \lfloor \frac {122}{41} \color{#3D99F6} \left \lfloor \frac {122}{41} \right \rfloor \right \rfloor \right \rfloor \right \rfloor & \small \color{#3D99F6} \text{Note that }\left \lfloor \frac {122}{41} \right \rfloor = 2 \\ & = \left \lfloor \frac {122}{41} \left \lfloor \frac {122}{41} \color{#3D99F6} \left \lfloor \frac {244}{41} \right \rfloor \right \rfloor \right \rfloor & \small \color{#3D99F6} \left \lfloor \frac {244}{41} \right \rfloor = 5 \\ & = \left \lfloor \frac {122}{41} \color{#3D99F6} \left \lfloor \frac {610}{41} \right \rfloor \right \rfloor & \small \color{#3D99F6} \text{and } \left \lfloor \frac {610}{41} \right \rfloor = 14 \\ & = \left \lfloor \frac {1708}{41} \right \rfloor = 41 = n \end{aligned}

Checking with other values of n n , we get { n = 42 x x x x = 40 n = 43 x x x x = 39 n = 44 x x x x = 36 \begin{cases} n=42 & \implies \lfloor{x \lfloor{x \lfloor{x \lfloor{x\rfloor}\rfloor}\rfloor}\rfloor} = 40 \\ n=43 & \implies \lfloor{x \lfloor{x \lfloor{x \lfloor{x\rfloor}\rfloor}\rfloor}\rfloor} =39 \\ n=44 & \implies \lfloor{x \lfloor{x \lfloor{x \lfloor{x\rfloor}\rfloor}\rfloor}\rfloor} =36 \end{cases}

Therefore, x = 122 41 x = \dfrac {122}{41} satisfies the equation and a + b = 122 + 41 = 163 a+b=122+41 = \boxed {163} .

@Chew-Seong Cheong sir how 2.7<x<3 implies 41<n<45 ??

Moulik Bhattacharya - 2 years, 7 months ago

Log in to reply

n = 122 2 + { x } n = \dfrac {122}{2+\{x\}}

Chew-Seong Cheong - 2 years, 7 months ago

Log in to reply

Thanks a lot

Moulik Bhattacharya - 2 years, 7 months ago
Otto Bretscher
Oct 26, 2018

Let's define the functions f ( x ) = x x x x f(x)=\lfloor x\lfloor x\lfloor x \lfloor x \rfloor\rfloor\rfloor\rfloor and g ( x ) = x f ( x ) g(x)=xf(x) . Note that f ( x ) f(x) is non-decreasing and g ( x ) g(x) is increasing for x > 0 x>0 . We quickly realize that the x x we seek is just below 3, and we compute that f ( 2.95 ) = f ( 2.99 ) = 41 f(2.95)=f(2.99)=41 . On I = [ 2.95 , 2.99 ] I=[2.95,2.99] we have g ( x ) = 41 x = 122 g(x)=41x=122 for x = 122 41 2.976 x=\frac{122}{41}\approx 2.976 . The answer is 122 + 41 = 163 122+41=\boxed{163} .

Jeremy Galvagni
Oct 25, 2018

It is clear that 2 < x < 3 2<x<3 and after a little playing around it is also pretty obvious that x x is pretty close to 3. So let's make a guess that x = 3 1 n = 3 n 1 n x=3-\frac{1}{n}=\frac{3n-1}{n} .

The solution satisfies x a = 122 x\lfloor a \rfloor =122 for some a a which implies 122 n 3 n 1 \frac{122n}{3n-1} is a whole number.

The only values for n n are 1 1 (which we ignore) and 41 41 .

Using this x = 122 41 x=\frac{122}{41}

Fingers crossed, we try it and it works. As the left side of the equation is increasing for positive x, this is the only solution.

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...