An algebra problem by tim oneil

Algebra Level 3

If 3 y 1 x = 2 x + y \dfrac3{\sqrt y} -\dfrac1{\sqrt x} = \dfrac2{\sqrt x + \sqrt y} , find x y \dfrac xy to 3 decimal places.


The answer is 0.3333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 12, 2018

3 y 1 x = 2 x + y Multiply both sides by x 3 x y 1 = 2 x x + y Divide up and down by y 3 x y 1 = 2 x y x y + 1 Multiply both sides by x y + 1 ( 3 x y 1 ) ( x y + 1 ) = 2 x y 3 × x y + 2 x y 1 = 2 x y 3 × x y = 1 x y = 1 3 0.333 \begin{aligned} \frac 3{\sqrt y} - \frac 1{\sqrt x} & = \frac 2{\sqrt x + \sqrt y} & \small \color{#3D99F6} \text{Multiply both sides by }\sqrt x \\ 3 \sqrt {\frac xy} - 1 & = \color{#3D99F6} \frac {2\sqrt x}{\sqrt x + \sqrt y} & \small \color{#3D99F6} \text{Divide up and down by }\sqrt y \\ 3 \sqrt {\frac xy} - 1 & = \color{#3D99F6} \frac {2 \sqrt {\frac xy}}{\sqrt {\frac xy}+1} & \small \color{#3D99F6} \text{Multiply both sides by }\sqrt {\frac xy}+1 \\ \left(3 \sqrt {\frac xy} - 1\right)\left(\sqrt {\frac xy}+1\right) & = 2 \sqrt {\frac xy} \\ 3 \times \frac xy + 2\sqrt {\frac xy} - 1 & = 2 \sqrt {\frac xy} \\ 3 \times \frac xy & = 1 \\ \implies \frac xy & = \frac 13 \approx \boxed{0.333} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...