I am just messing

The value of { 5 2 n 24 } \{\frac{5^{2n}}{24}\} , n N n\in \mathbb {N} where { . } \{.\} denotes fractional part of x x is

5 24 \frac{5}{24} 1 24 \frac{1}{24} none 0 1 5 \frac{1}{5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

5 2 n 24 = 2 5 n 24 = ( 24 + 1 ) n 24 5 2 n 1 ( m o d 24 ) \dfrac {5^{2n}}{24}=\dfrac {25^{n}}{24} = \dfrac {(24+1)^{n}}{24}\quad \Rightarrow 5^{2n} \equiv 1 \pmod{24}

{ 5 2 n 24 } = 5 2 n 24 5 2 n 24 = 1 24 \Rightarrow \left \{ \dfrac {5^{2n}}{24} \right \} = \dfrac {5^{2n}}{24} - \left \lfloor \dfrac {5^{2n}}{24} \right \rfloor = \boxed {\dfrac {1}{24}}

sir shouldn't it be ( 24 + 1 ) n 24 \frac{(24+1)^{n}}{24}

Tanishq Varshney - 6 years, 2 months ago

Log in to reply

Yes, pardon this old man

Chew-Seong Cheong - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...