I apologize in advance

Calculus Level 5

0 π / 4 sin ( x ) cos ( 3 x ) sin ( 5 x ) cos ( 7 x ) sin ( 9 x ) cos ( 11 x ) d x \large \int_0^{\pi/4} \sin(x) \cos(3x) \sin(5x) \cos(7x) \sin(9x) \cos(11x) \, dx

If the integral above is equal to a b \dfrac ab , where a a and b b are coprime positive integers, find the value of a + b a+b .


The answer is 24508277.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tai Ching Kan
Nov 17, 2015

Note: I am not convinced that this is the simplest solution possible, but it was the only one I could think of up until the posting of this solution.

Let I I be sin ( x ) cos ( 3 x ) sin ( 5 x ) cos ( 7 x ) sin ( 9 x ) cos ( 11 x ) d x \int{\sin{(x)}\,{\cos{(3x)}}\; {\sin{(5x)}}\; {\cos{(7x)}}\; {\sin{(9x)}}\; {\cos{(11x)}}\; \mathrm{d}x}

By the product-to-sum formulae,

sin x cos 3 x = 1 2 ( sin 4 x sin 2 x ) \sin{x}\cos{3x}=\frac{1}{2}(\sin{4x}-\sin{2x}) ,

sin 5 x cos 7 x = 1 2 ( sin 12 x sin 2 x ) \sin{5x}\cos{7x}=\frac{1}{2}(\sin{12x}-\sin{2x}) , and

sin 9 x cos 11 x = 1 2 ( sin 20 x sin 2 x ) \sin{9x}\cos{11x}=\frac{1}{2}(\sin{20x}-\sin{2x}) .

We therefore have:

I = 1 8 ( sin 4 x sin 2 x ) ( sin 12 x sin 2 x ) ( sin 20 x sin 2 x ) d x I=\frac{1}{8}\int{(\sin{4x}-\sin{2x})\cdot{(\sin{12x}-\sin{2x})}\cdot{(\sin{20x}-\sin{2x})}\;\mathrm{d}x}

= 1 8 ( sin 4 x sin 12 x sin 4 x sin 2 x sin 2 x sin 12 x + sin 2 2 x ) ( sin 20 x sin 2 x ) d x =\frac{1}{8}\int{(\sin{4x}\cdot{\sin{12x}}-\sin{4x}\cdot{\sin{2x}}-\sin{2x}\cdot{\sin{12x}}+\sin^{2}{2x})\cdot{(\sin{20x}-\sin{2x})}\;\mathrm{d}x}

Again by product-to-sum formulae, and after simplification,

I = 1 16 ( c ( 16 x ) + c ( 8 x ) + c ( 6 x ) c ( 2 x ) + c ( 14 x ) c ( 10 x ) c ( 4 x ) + 1 ) ( s ( 20 x ) s ( 2 x ) ) d x I=\frac{1}{16}\int{(-c(16x)+c(8x)+c(6x)-c(2x)+c(14x)-c(10x)-c(4x)+1)\cdot{(s(20x)-s(2x))}\;\mathrm{d}x}

where c ( f ( x ) ) c(f(x)) indicates the cosine of f ( x ) f(x) and s ( f ( x ) ) s(f(x)) indicates the sine of f ( x ) f(x) .

After expanding, and simplifying using yet again the product-to-sum formulae, we finally arrive at

I = 1 16 ( 3 2 s ( 2 x ) + 1 2 s ( 4 x ) + 3 2 s ( 6 x ) s ( 8 x ) s ( 10 x ) + 3 2 s ( 12 x ) + s ( 16 x ) + s ( 20 x ) 1 2 s ( 22 x ) . . . I=\frac{1}{16}\int{(-\frac{3}{2}s(2x)+\frac{1}{2}s(4x)+\frac{3}{2}s(6x)-s(8x)-s(10x)+\frac{3}{2}s(12x)+s(16x)+s(20x)-\frac{1}{2}s(22x)\;...}

. . . 1 2 s ( 24 x ) + 1 2 s ( 26 x ) + 1 2 s ( 28 x ) 1 2 s ( 30 x ) + 1 2 s ( 34 x ) 1 2 s ( 36 x ) ) d x ...\;-\frac{1}{2}s(24x)+\frac{1}{2}s(26x)+\frac{1}{2}s(28x)-\frac{1}{2}s(30x)+\frac{1}{2}s(34x)-\frac{1}{2}s(36x))\;\mathrm{d}x

which integrates to give us

3 cos ( 2 x ) 64 cos ( 4 x ) 128 cos ( 6 x ) 64 + cos ( 8 x ) 128 + cos ( 10 x ) 160 cos ( 12 x ) 128 + cos ( 16 x ) 256 cos ( 20 x ) 320 + cos ( 22 x ) 704 + cos ( 24 x ) 768 . . . \frac{3\cos(2x)}{64}-\frac{\cos(4x)}{128}-\frac{\cos(6x)}{64}+\frac{\cos(8x)}{128}+\frac{\cos(10x)}{160}-\frac{\cos(12x)}{128}+\frac{\cos(16x)}{256}-\frac{\cos(20x)}{320}+\frac{\cos(22x)}{704}+\frac{\cos(24x)}{768}\;...

. . . cos ( 26 x ) 832 cos ( 28 x ) 896 + cos ( 30 x ) 960 cos ( 34 x ) 1088 + cos ( 36 x ) 1152 + C ...\;-\;\frac{\cos(26x)}{832}-\frac{\cos(28x)}{896}+\frac{\cos(30x)}{960}-\frac{\cos(34x)}{1088}+\frac{\cos(36x)}{1152}+C

Finally, substituting our upper limit π 4 \frac{\pi}{4} and lower limit 0 0 into the integral, we get 3797 24 504 480 \frac{3797}{24\,504\,480} which cannot be further simplified.

Therefore, a + b = 3797 + 24 504 480 = 24 508 277 a+b=3797+24\,504\,480=\boxed{24\,508\,277}

I did the product to sum formula repeatedly.

Split the sines and cosines separately: use Product to Sum Trigonometric Formulas repeatedly. Then I have 16 linearized trigo functions to integrate. Tedious as well, but it's certainly shorter.

Another slightly shorter approach is to note that 1 + 11 = 3 + 9 = 5 + 7 1 + 11 = 3 + 9 = 5 + 7 . Then use the product to sum formula by grouping them as such, then apply the substitution y = 2 x y = 2x so that after every terms are powers of a single trigo function, you can apply the reduction formula: 0 π 2 sin 2 n θ d θ = 0 π 2 cos 2 n θ d θ = ( 2 n 1 ) ! ! ( 2 n ) ! ! × π 2 \displaystyle \int_0^{\pi2} \sin^{2n} \theta \, d \theta = \int_0^{\pi2} \cos^{2n} \theta \, d \theta = \dfrac{(2n-1)!!}{(2n)!!} \times \dfrac \pi2 .

Pi Han Goh - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...