I begin

Geometry Level 4

{ a 2 + b 2 + c 2 = 50 a 3 + b 3 + c 3 = 216 a b + b c + c a = 47 \begin{cases} a^{2}+b^{2}+c^{2}=50 \\ a^{3}+b^{3}+c^{3}=216 \\ ab+bc+ca=47 \end{cases}

For A B C \triangle ABC with sides a , b a,b and c c , let R R and r r denote the radius of circumcircle and incircle of A B C \triangle ABC . If the values of a , b a,b and c c satisfy the system of equations above, find the value of R × r R \times r .


The answer is 2.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Siddharth Singh
Jun 20, 2015

( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)

( a + b + c ) 2 = 50 + 2 ( 47 ) (a+b+c)^{2}=50+2(47)

( a + b + c ) 2 = 144 (a+b+c)^{2}=144

( a + b + c ) = 12 (a+b+c)=12 -(1)

a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 ( a b + b c + c a ) ) a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-(ab+bc+ca))

216 3 a b c = 12 ( 50 47 ) 216-3abc=12*(50-47)

3 a b c = 180 3abc=180

a b c = 60 abc=60 -(2)

a b c R = r ( a + b + c 2 ) \frac{abc}{R}=r(\frac{a+b+c}{2})

60 R = r ( 12 2 ) \frac{60}{R}=r(\frac{12}{2})

R r = 60 12 2 = 2.5 R*r=\frac{60}{12*2}=\boxed { 2.5 }

Answer should be 10 (Acc. to your solution)

60 R = r 12 2 R × r = 60 × 2 12 = 10 \large{\frac{60}{R}=r\frac{12}{2} \\ R\times r = \frac{60\times 2}{12}=10}

Department 8 - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...