∫ 0 1 x 6 ( 1 − x 2 ) 2 1 d x
Given that the integral above is equal to B A π for coprime positive integers A and B , find the value of A + B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Good solution sir.!!!! Sir there is another method through which i have solved. Using beta function. Putting x^2 = t and generating beta integral. Kindly comment. on my method..!
Log in to reply
Oh, I was sure there must be an easier way to solve this problem. Thanks for the hint. Learnt beta function 30 years ago but never got to use it. The solution is here:
∫ 0 2 π sin n θ cos m θ d θ − 2 1 B ( 2 1 ( n + 1 ) , 2 1 ( m + 1 ) )
⇒ ∫ 0 2 π sin 6 θ cos 2 θ d θ − 2 1 B ( 2 7 , 2 3 ) = 2 Γ ( 2 7 + 2 3 ) Γ ( 2 7 ) Γ ( 2 3 )
= 2 ˙ 4 ! 2 5 ˙ 2 3 ˙ 2 1 ˙ π ˙ 2 1 ˙ π = 2 5 6 5 π
Log in to reply
Thanks sir.!
Another method: Apply the reduction formula:
∫ 0 π / 2 sin 2 n θ d θ = ( 2 n ) ! ! ( 2 n − 1 ) ! ! × 2 π .
So on your very first line, we have
… = ∫ 0 π / 2 sin 6 θ ( 1 − sin 2 θ ) d θ = ∫ 0 π / 2 sin 6 θ d θ − ∫ 0 π / 2 sin 8 θ d θ = 2 π ( 6 ! ! 5 ! ! − 8 ! ! 7 ! ! ) = 2 5 6 5 π
Problem Loading...
Note Loading...
Set Loading...
Let x = sin θ , then we have:
∫ 0 1 x 6 1 − x 2 d x = ∫ 0 2 π sin 6 θ 1 − sin 2 θ cos θ d θ = ∫ 0 2 π sin 6 θ cos 2 θ d θ
= 4 1 ∫ 0 2 π sin 4 θ sin 2 2 θ d θ = 1 6 1 ∫ 0 2 π ( 1 − cos 2 θ ) 2 ( 1 − cos 2 2 θ ) d θ
= 1 6 1 ∫ 0 2 π ( 1 − cos 2 θ ) 3 ( 1 + cos 2 θ ) d θ
= 1 6 1 ∫ 0 2 π ( 1 − 3 cos 2 θ + 3 cos 2 2 θ − cos 3 2 θ ) ( 1 + cos 2 θ ) d θ
= 1 6 1 ∫ 0 2 π ( 1 − 2 cos 2 θ + 2 cos 3 2 θ − cos 4 2 θ ) d θ
= 1 6 1 [ θ − sin 2 θ + sin 2 θ − 3 sin 3 2 θ ] 0 2 π − 1 6 1 ∫ 0 2 π cos 4 2 θ d θ
= 3 2 π − 6 4 1 ∫ 0 2 π ( 1 + cos 4 θ ) 2 d θ
= 3 2 π − 6 4 1 ∫ 0 2 π ( 1 + 2 cos 4 θ + cos 2 4 θ ) d θ
= 3 2 π − 6 4 1 [ θ + 2 sin 4 θ + 2 θ + 1 6 sin 8 θ ] 0 2 π
= 3 2 π − 6 4 1 [ 4 3 π ] = 2 5 6 5 π