What substitution should I make?

Calculus Level 3

0 1 x 6 ( 1 x 2 ) 1 2 d x \large \int_0^1 x^6 (1-x^2)^{\frac12} \, dx

Given that the integral above is equal to A B π \dfrac AB \pi for coprime positive integers A A and B B , find the value of A + B A+B .


The answer is 261.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let x = sin θ x = \sin {\theta} , then we have:

0 1 x 6 1 x 2 d x = 0 π 2 sin 6 θ 1 sin 2 θ cos θ d θ = 0 π 2 sin 6 θ cos 2 θ d θ \displaystyle \int _0 ^1 {x^6\sqrt{1-x^2} dx} = \int _0 ^{\frac{\pi}{2}} {\sin^6 {\theta} \sqrt{1-\sin^2{\theta}} \cos{\theta} d\theta} = \int _0 ^{\frac{\pi}{2}} {\sin^6 {\theta} \cos^2 {\theta} d\theta}

= 1 4 0 π 2 sin 4 θ sin 2 2 θ d θ = 1 16 0 π 2 ( 1 cos 2 θ ) 2 ( 1 cos 2 2 θ ) d θ \displaystyle = \frac {1}{4} \int _0 ^{\frac{\pi}{2}} {\sin^4 {\theta} \sin^2 {2\theta} d\theta} = \frac {1}{16} \int _0 ^{\frac{\pi}{2}} {(1-\cos{2\theta})^2 (1- \cos^2 {2\theta}) d\theta}

= 1 16 0 π 2 ( 1 cos 2 θ ) 3 ( 1 + cos 2 θ ) d θ \displaystyle = \frac {1}{16} \int _0 ^{\frac{\pi}{2}} {(1-\cos{2\theta})^3 (1+ \cos {2\theta}) d\theta}

= 1 16 0 π 2 ( 1 3 cos 2 θ + 3 cos 2 2 θ cos 3 2 θ ) ( 1 + cos 2 θ ) d θ \displaystyle = \frac {1}{16} \int _0 ^{\frac{\pi}{2}} {(1-3\cos{2\theta} + 3\cos^2{2\theta} - \cos^3{2\theta}) (1+ \cos {2\theta}) d\theta}

= 1 16 0 π 2 ( 1 2 cos 2 θ + 2 cos 3 2 θ cos 4 2 θ ) d θ \displaystyle = \frac {1}{16} \int _0 ^{\frac{\pi}{2}} {(1-2\cos{2\theta} + 2\cos^3{2\theta} - \cos^4{2\theta}) d\theta}

= 1 16 [ θ sin 2 θ + sin 2 θ sin 3 2 θ 3 ] 0 π 2 1 16 0 π 2 cos 4 2 θ d θ \displaystyle = \frac {1}{16} \left[ \theta - \sin{2\theta} + \sin{2\theta} - \frac {\sin^3{2\theta}}{3} \right] _0^{\frac{\pi}{2}} - \frac {1}{16} \int _0 ^{\frac{\pi}{2}} {\cos^4{2\theta} d\theta}

= π 32 1 64 0 π 2 ( 1 + cos 4 θ ) 2 d θ \displaystyle = \frac {\pi}{32} - \frac {1}{64} \int _0 ^{\frac{\pi}{2}} {(1+\cos{4\theta})^2 d\theta}

= π 32 1 64 0 π 2 ( 1 + 2 cos 4 θ + cos 2 4 θ ) d θ \displaystyle = \frac {\pi}{32} - \frac {1}{64} \int _0 ^{\frac{\pi}{2}} {(1+2 \cos{4\theta} + \cos^2{4\theta}) d\theta}

= π 32 1 64 [ θ + sin 4 θ 2 + θ 2 + sin 8 θ 16 ] 0 π 2 \displaystyle = \frac {\pi}{32} - \frac {1}{64} \left[\theta + \frac {\sin{4\theta}}{2} + \frac {\theta}{2} + \frac {\sin{8\theta}}{16} \right] _0 ^{\frac{\pi}{2}}

= π 32 1 64 [ 3 π 4 ] = 5 π 256 \displaystyle = \frac {\pi}{32} - \frac {1}{64} \left[ \frac{3\pi}{4} \right] = \boxed{\dfrac{5\pi}{256}}

Good solution sir.!!!! Sir there is another method through which i have solved. Using beta function. Putting x^2 = t and generating beta integral. Kindly comment. on my method..!

Mahimn Bhatt - 6 years, 4 months ago

Log in to reply

Oh, I was sure there must be an easier way to solve this problem. Thanks for the hint. Learnt beta function 30 years ago but never got to use it. The solution is here:

0 π 2 sin n θ cos m θ d θ 1 2 B ( 1 2 ( n + 1 ) , 1 2 ( m + 1 ) ) \displaystyle \int _0 ^{\frac{\pi}{2}} {\sin^n {\theta} \cos ^m {\theta} d\theta} - \frac {1}{2} B \left( \frac {1}{2} (n+1), \frac {1}{2} (m+1) \right)

0 π 2 sin 6 θ cos 2 θ d θ 1 2 B ( 7 2 , 3 2 ) = Γ ( 7 2 ) Γ ( 3 2 ) 2 Γ ( 7 2 + 3 2 ) \displaystyle \Rightarrow \int _0 ^{\frac{\pi}{2}} {\sin^6 {\theta} \cos ^2 {\theta} d\theta} - \frac {1}{2} B \left( \frac {7}{2}, \frac {3}{2} \right) = \frac {\Gamma (\frac {7}{2}) \Gamma (\frac {3}{2})}{2\Gamma (\frac {7}{2}+\frac {3}{2})}

= 5 2 ˙ 3 2 ˙ 1 2 ˙ π ˙ 1 2 ˙ π 2 ˙ 4 ! = 5 π 256 \displaystyle \quad \space = \frac {\frac{5}{2}\dot{} \frac{3}{2}\dot{} \frac{1}{2}\dot{} \sqrt{\pi} \dot{} \frac{1}{2}\dot{} \sqrt{\pi}}{2 \dot{} 4!} = \boxed{\dfrac {5\pi}{256}}

Chew-Seong Cheong - 6 years, 4 months ago

Log in to reply

Thanks sir.!

Mahimn Bhatt - 6 years, 4 months ago

Another method: Apply the reduction formula:

0 π / 2 sin 2 n θ d θ = ( 2 n 1 ) ! ! ( 2 n ) ! ! × π 2 . \int_0^{\pi/2} \sin^{2n} \theta \, d\theta = \dfrac{(2n-1)!!}{(2n)!!} \times \dfrac \pi 2.

So on your very first line, we have

= 0 π / 2 sin 6 θ ( 1 sin 2 θ ) d θ = 0 π / 2 sin 6 θ d θ 0 π / 2 sin 8 θ d θ = π 2 ( 5 ! ! 6 ! ! 7 ! ! 8 ! ! ) = 5 π 256 \ldots = \int_0^{\pi/2} \sin^6\theta (1 - \sin^2\theta) \, d\theta = \int_0^{\pi/2} \sin^6\theta \, d\theta- \int_0^{\pi/2} \sin^8\theta \, d\theta= \dfrac\pi2 \left( \dfrac{5!!}{6!!} - \dfrac {7!!}{8!!} \right) = \dfrac{5\pi}{256}

Pi Han Goh - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...