I can handle d d x \frac d{dx} , but d 2 d x 2 \frac {d^2}{dx^2} ?

Calculus Level 3

d d ( x 2 ) x x x = 2 = ? \large \left. \dfrac{d}{d(x^{2})} x^{x} \right\vert _{x = 2} = \, ?

Give your answer to 3 decimal places.


The answer is 1.6931471.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

展豪 張
Nov 26, 2015

d d ( x 2 ) x x \dfrac{d}{d(x^2)}x^x
= d x d x 2 e x ln x d x =\dfrac{dx}{dx^2} \dfrac{e^{x\ln x}}{dx}
= 1 d x 2 d x e x ln x d d x ( x ln x ) =\dfrac 1{\frac{dx^2}{dx}} e^{x\ln x} \dfrac d{dx} (x\ln x)
= 1 2 x x x ( ln x + 1 ) =\dfrac 1{2x} x^x (\ln x + 1)
Substitute x = 2 x=2
= 1 4 2 2 ( ln 2 + 1 ) =\dfrac 1 4 2^2 (\ln 2 + 1)
= ln 2 + 1 =\ln 2 + 1
1.69 \approx 1.69


Jake Lai
Jun 10, 2015

Let y = x 2 y = x^{2} ; then x x = y y 1 / 2 / 2 x^{x} = y^{y^{1/2}/2} . Our derivative then becomes

d d ( x 2 ) x x = d d y y y 1 / 2 / 2 \frac{d}{d(x^{2})} x^{x} = \frac{d}{dy} y^{y^{1/2}/2}

If we observe the logarithmic derivative instead, we have by

Chain rule :

d d y ln y y 1 / 2 / 2 = d d y y y 1 / 2 / 2 y y 1 / 2 / 2 = d d ( x 2 ) x x x x \frac{d}{dy} \ln y^{y^{1/2}/2} = \frac{\frac{d}{dy} y^{y^{1/2}/2}}{y^{y^{1/2}/2}} = \frac{\frac{d}{d(x^{2})} x^{x}}{x^{x}}

Product rule :

d d y ln y y 1 / 2 / 2 = d d y 1 2 y 1 / 2 ln y = ln y + 2 4 y 1 / 2 = ln x + 1 2 x \frac{d}{dy} \ln y^{y^{1/2}/2} = \frac{d}{dy} \frac{1}{2} y^{1/2} \ln y = \frac{\ln y + 2}{4y^{1/2}} = \frac{\ln x + 1}{2x}

Equating the two, we get

d d ( x 2 ) x x = x x ln x + 1 2 x \frac{d}{d(x^{2})} x^{x} = x^{x} \frac{\ln x + 1}{2x}

Thus,

d d ( x 2 ) x x x = 2 = x x ln x + 1 2 x x = 2 = 2 2 ln 2 + 1 2 ( 2 ) 1.693 \left. \frac{d}{d(x^{2})} x^{x} \right\vert_{x=2} = \left. x^{x} \frac{\ln x + 1}{2x} \right\vert_{x=2} = 2^{2} \frac{\ln 2 + 1}{2(2)} \approx \boxed{1.693}

Or we can just apply chain rule. Let y = x x y = x^x , using logarithmic differentiation, we get d y d x = x x ( ln x + 1 ) \frac{dy}{dx} = x^x (\ln x + 1) .

d y d ( x 2 ) = d y d x d x d ( x 2 ) \frac {dy}{d(x^2)} = \frac{dy}{dx} \cdot \frac{dx}{d(x^2)}

Because ( x ) 2 = x 2 (x)^2 = x^2 , we differentiate with respect to x 2 x^2 :

2 x d x d ( x 2 ) = 1 d x d ( x 2 ) = 1 2 x 2x \cdot \frac{dx}{d(x^2)} = 1 \Rightarrow \frac{dx}{d(x^2)} = \frac 1{2x}

d y d ( x 2 ) = x x ( ln x + 1 ) 1 2 x \Rightarrow \frac {dy}{d(x^2)} = x^x (\ln x + 1) \cdot \frac 1{2x} .

Pi Han Goh - 6 years ago

An easier way would be dividing be d x dx in both numerator and denominator then solving them seperately.

Krishna Sharma - 6 years ago

Log in to reply

Did exactly the same way

Atul Shivam - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...