May be you can have an improper integral

Calculus Level 5

0 π / 2 sin 2 x sin x cos x + 1 d x \large \int_0^{\pi /2} \dfrac{\sin^2 x}{\sin x \cos x + 1} \, dx

The integral above has a closed form. Find the value of this closed form.

Give your answer to 3 decimal places.


The answer is 0.604.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Mar 1, 2016

Use a b f ( x ) d x = a b f ( a + b x ) d x \color{#D61F06}{\int_a^b f(x)dx=\int_a^b f(a+b-x)dx} . I = 0 π 2 sin 2 x d x 1 + sin x cos x = 0 π / 2 cos 2 x d x 1 + sin x cos x \mathfrak{I}=\int_0^{\frac{\pi}{2}}\dfrac{\sin^2 x\, dx}{1+\sin x \cos x } =\int_0^{\pi /2} \dfrac{\cos^2 x \, dx}{1+ \sin x \cos x } Adding and using 2 sin x cos x = sin 2 x \color{#D61F06}{2\sin x\cos x=\sin 2x} . I = 0 π 2 d x 2 + sin 2 x \large\implies \mathfrak{I}=\int_0^{\frac{\pi}{2}}\dfrac{\, dx}{2+\sin 2x} Using sin 2 x = 2 tan x 1 + tan 2 x \color{#D61F06}{\sin 2x=\dfrac{2 \tan x}{1+\tan^2 x}} . I = 0 π 2 1 2 ( ( 1 + tan 2 x ) d x 1 + tan x + tan 2 x ) \large\implies \mathfrak{I}=\int_0^{\frac{\pi}{2}} \dfrac 12 \left(\dfrac{(1+\tan^2 x)dx}{1+\tan x+\tan^2 x }\right) ( 1 + tan 2 x = d ( tan x ) ) ~~~~~~(\color{#D61F06}{1+\tan^2 x=d(\tan x)}) = 1 2 ( 0 π 2 d ( tan x ) ( tan x + 1 2 ) 2 + 3 4 ) \large =\dfrac 12 \left(\int_0^{\frac{\pi}{2}} \dfrac{d(\tan x)}{(\tan x+\frac 12)^2+\frac 34}\right) = 1 3 ( tan 1 ( 2 tan x + 1 3 ) ) 0 π 2 \Large =\dfrac{1}{\sqrt 3}\left(\tan^{-1}\left(\dfrac{2\tan x+1}{\sqrt 3}\right)\right)|_{\small 0}^{\small{\frac{\pi}{2}}} = π 3 3 \Large =\dfrac{\pi}{3\sqrt 3} 0.605 \huge \approx \boxed{\color{#007fff}{0.605}}

To 3 3 DP, the answer should be 0.605 0.605 , since π 3 3 = 0.6045997881... \frac{\pi}{3\sqrt{3}} = 0.6045997881... .

Mark Hennings - 5 years, 2 months ago

Log in to reply

Yep .... Absolutely...

Rishabh Jain - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...