∫ 0 π / 2 sin x cos x + 1 sin 2 x d x
The integral above has a closed form. Find the value of this closed form.
Give your answer to 3 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
To 3 DP, the answer should be 0 . 6 0 5 , since 3 3 π = 0 . 6 0 4 5 9 9 7 8 8 1 . . . .
Problem Loading...
Note Loading...
Set Loading...
Use ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x . I = ∫ 0 2 π 1 + sin x cos x sin 2 x d x = ∫ 0 π / 2 1 + sin x cos x cos 2 x d x Adding and using 2 sin x cos x = sin 2 x . ⟹ I = ∫ 0 2 π 2 + sin 2 x d x Using sin 2 x = 1 + tan 2 x 2 tan x . ⟹ I = ∫ 0 2 π 2 1 ( 1 + tan x + tan 2 x ( 1 + tan 2 x ) d x ) ( 1 + tan 2 x = d ( tan x ) ) = 2 1 ( ∫ 0 2 π ( tan x + 2 1 ) 2 + 4 3 d ( tan x ) ) = 3 1 ⎝ ⎛ tan − 1 ⎝ ⎛ 3 2 tan x + 1 ⎠ ⎞ ⎠ ⎞ ∣ 0 2 π = 3 3 π ≈ 0 . 6 0 5