I can't believe this is real

Algebra Level 3

x = 1 1 1 1 1 1 1 1 1 1 \Large x=\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\dots}-1}-1}-1}-1}-1

Given the above, determine the value of x 10 + 1 x 10 x^{10}+\dfrac{1}{x^{10}} .


Hint and inspiration: Perhaps you call it Newton's sum .

Bonus: Can you generalise the value of x n + 1 x n x^n + \dfrac{1}{x^n} in terms of Fibonacci numbers?


The answer is 123.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

It is given that:

x = 1 1 1 1 1 c d o t s 1 1 1 1 1 x = 1 x 1 x 1 x = 1 ( x 1 x ) 2 = ( 1 ) 2 = 1 x 2 2 + 1 x 2 = 1 x 2 + 1 x 2 = 3 ( x + 1 x ) 2 = x 2 + 2 + 1 x 2 = 5 \begin{aligned} x & = \frac 1{\frac 1{\frac 1{\frac 1{\frac 1{cdots} - 1} - 1} - 1} - 1} - 1 \\ \implies x & = \frac 1x - 1 \\ x - \frac 1x & = -1 \\ \left(x - \frac 1x\right)^2 & = (-1)^2 = 1 \\ x^2 - 2 + \frac 1{x^2} & = 1 \\ x^2 + \frac 1{x^2} & = 3 \\ \left(x+\frac 1x\right)^2 & = x^2 + 2 + \frac 1{x^2} = 5 \end{aligned}

Let P n = x n + 1 x n P_n = x^n + \dfrac 1{x^n} ; then P 2 = 3 P_2 = 3 and P 1 2 = 5 P_1^2 = 5 .

Let us prove by induction the claim that P n = x n + 1 x n = { F n ( x + 1 x ) when n is odd F n + 1 + F n 1 when n is even P_n = x^n + \dfrac 1{x^n} = \begin{cases} F_n \left(x + \dfrac 1x \right) & \text{when }n \text{ is odd} \\ F_{n+1} + F_{n-1} & \text{when }n \text{ is even} \end{cases} , where F n F_n is the n n th Fibonacci number .

When n = 1 n=1 , then P 1 = x + 1 x = F 1 ( x + 1 x ) P_1 = x + \dfrac 1x = F_1 \left(x + \dfrac 1x\right) and P 2 = 3 = F 3 + F 1 P_2 = 3 = F_3 + F_1 , therefore the claim is true for n = 1 n=1 and n = 2 n=2 .

Assuming the claim is true for n n and n + 1 n+1 , where n n is odd. By Newton's sum , we have:

P n + 2 = P 1 P n + 1 P n = ( F n + 2 + F n ) P 1 F n P 1 = F n + 2 ( x + 1 x ) P n + 3 = P 1 P n + 2 P n + 1 = F n + 2 P 1 2 ( F n + 2 + F n ) = 5 F n + 2 F n + 2 F n = F n + 4 F n + 3 + F n + 3 F n + 1 + F n + 2 + F n + 1 + F n F n = F n + 4 + F n + 2 \begin{aligned} P_{n+2} & = P_1P_{n+1} - P_n \\ & = (F_{n+2}+F_n)P_1 - F_nP_1 = F_{n+2}\left(x + \dfrac 1x\right) \\ P_{n+3} & = P_1P_{n+2} - P_{n+1} \\ & = F_{n+2}P_1^2 - (F_{n+2}+F_n) = 5F_{n+2} - F_{n+2} - F_n \\ & = F_{n+4} - F_{n+3} + F_{n+3} - F_{n+1} + F_{n+2} + F_{n+1} + F_n - F_n \\ & = F_{n+4} + F_{n+2} \end{aligned}

Therefore the claim is also true for n + 2 n+2 and n + 3 n+3 , hence true for all n 1 n \ge 1 . And P 10 = F 11 + F 9 = 89 + 34 = 123 P_{10} = F_{11} + F_9 = 89+34 = \boxed{123} .

Nick Kent
Aug 4, 2019

Since this is a recurrent relation we can rewrite it:

x = 1 x 1 x 1 x = 1 x = \frac { 1 } { x } - 1 \\ x - \frac { 1 } { x } = - 1

Let's look at a series of even degree binoms:

( x 1 x ) 2 = x 2 + 1 x 2 2 = ( 1 ) 2 = 1 ( x 1 x ) 4 = x 4 + 1 x 4 4 x 2 4 x 2 + 6 = ( 1 ) 4 = 1 ( x 1 x ) 6 = x 6 + 1 x 6 6 x 4 6 x 4 + 15 x 2 + 15 x 2 20 = ( 1 ) 6 = 1 ( x 1 x ) 8 = x 8 + 1 x 8 8 x 6 8 x 6 + 28 x 4 + 28 x 4 56 x 2 56 x 2 + 70 = ( 1 ) 8 = 1 ( x 1 x ) 10 = x 10 + 1 x 10 10 x 8 10 x 8 + 45 x 6 + 45 x 6 120 x 4 120 x 4 + 210 x 2 + 210 x 2 252 = ( 1 ) 10 = 1 { \left( x-\frac { 1 }{ x } \right) }^{ 2 }={ x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } -2={ \left( -1 \right) }^{ 2 }=1\\ { \left( x-\frac { 1 }{ x } \right) }^{ 4 }={ x }^{ 4 }+\frac { 1 }{ { x }^{ 4 } } -4{ x }^{ 2 }-\frac { 4 }{ { x }^{ 2 } } +6={ \left( -1 \right) }^{ 4 }=1\\ { \left( x-\frac { 1 }{ x } \right) }^{ 6 }={ x }^{ 6 }+\frac { 1 }{ { x }^{ 6 } } -6{ x }^{ 4 }-\frac { 6 }{ { x }^{ 4 } } +15{ x }^{ 2 }+\frac { 15 }{ { x }^{ 2 } } -20={ \left( -1 \right) }^{ 6 }=1\\ { \left( x-\frac { 1 }{ x } \right) }^{ 8 }={ x }^{ 8 }+\frac { 1 }{ { x }^{ 8 } } -8{ x }^{ 6 }-\frac { 8 }{ { x }^{ 6 } } +28{ x }^{ 4 }+\frac { 28 }{ { x }^{ 4 } } -56{ x }^{ 2 }-\frac { 56 }{ { x }^{ 2 } } +70={ \left( -1 \right) }^{ 8 }=1\\ { \left( x-\frac { 1 }{ x } \right) }^{ 10 }={ x }^{ 10 }+\frac { 1 }{ { x }^{ 10 } } -10{ x }^{ 8 }-\frac { 10 }{ { x }^{ 8 } } +45{ x }^{ 6\ }+\frac { 45 }{ { x }^{ 6 } } -120{ x }^{ 4 }-\frac { 120 }{ { x }^{ 4 } } +210{ x }^{ 2 }+\frac { 210 }{ { x }^{ 2 } } -252={ \left( -1 \right) }^{ 10 }=1

Now we can derive the sums:

x 2 + 1 x 2 = 1 + 2 x 4 + 1 x 4 = 1 6 + 4 ( x 2 + 1 x 2 ) x 6 + 1 x 6 = 1 + 20 15 ( x 2 + 1 x 2 ) + 6 ( x 4 + 1 x 4 ) x 8 + 1 x 8 = 1 70 + 56 ( x 2 + 1 x 2 ) 28 ( x 4 + 1 x 4 ) + 8 ( x 6 + 1 x 6 ) x 10 + 1 x 10 = 1 + 252 210 ( x 2 + 1 x 2 ) + 120 ( x 4 + 1 x 4 ) 45 ( x 6 + 1 x 6 ) + 10 ( x 8 + 1 x 8 ) { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } =1+2\\ { x }^{ 4 }+\frac { 1 }{ { x }^{ 4 } } =1-6+4\left( { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } \right) \\ { x }^{ 6 }+\frac { 1 }{ { x }^{ 6 } } =1+20-15\left( { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } \right) +6\left( { x }^{ 4 }+\frac { 1 }{ { x }^{ 4 } } \right) \\ { x }^{ 8 }+\frac { 1 }{ { x }^{ 8 } } =1-70+56\left( { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } \right) -28\left( { x }^{ 4 }+\frac { 1 }{ { x }^{ 4 } } \right) +8\left( { x }^{ 6 }+\frac { 1 }{ { x }^{ 6 } } \right) \\ { x }^{ 10 }+\frac { 1 }{ { x }^{ 10 } } =1+252-210\left( { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } \right) +120\left( { x }^{ 4 }+\frac { 1 }{ { x }^{ 4 } } \right) -45\left( { x }^{ 6 }+\frac { 1 }{ { x }^{ 6 } } \right) +10\left( { x }^{ 8 }+\frac { 1 }{ { x }^{ 8 } } \right) \\

x 2 + 1 x 2 = 3 x 4 + 1 x 4 = 5 + 4 3 = 7 x 6 + 1 x 6 = 21 15 3 + 6 7 = 18 x 8 + 1 x 8 = 69 + 56 3 28 7 + 8 18 = 47 x 10 + 1 x 10 = 253 210 3 + 120 7 45 18 + 10 47 = 123 { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } =3\\ { x }^{ 4 }+\frac { 1 }{ { x }^{ 4 } } =-5+4\cdot 3=7\\ { x }^{ 6 }+\frac { 1 }{ { x }^{ 6 } } =21-15\cdot 3+6\cdot 7=18\\ { x }^{ 8 }+\frac { 1 }{ { x }^{ 8 } } =-69+56\cdot 3-28\cdot 7+8\cdot 18=47\\ { x }^{ 10 }+\frac { 1 }{ { x }^{ 10 } } =253-210\cdot 3+120\cdot 7-45\cdot 18+10\cdot 47=\boxed { 123 } \\

Dorra Hamza
Feb 7, 2020

im not sure if this is the right way to solve it buut i just wrote 1/x-1=x as x²+x-1=0 and solved it, both roots give the same answer

Chris Lewis
Aug 5, 2019

From the definition of x x , we can see that x 1 x = 1 x-\frac{1}{x}=-1 , or alternatively x 2 + x 1 = 0 x^2+x-1=0 . We could just solve and calculate here, but this would get messy.

Let a n = x n + ( 1 x ) n a_n=x^n+\left( -\frac{1}{x} \right)^n . Note that this has the form of a solution to a recurrence relation - and this is what we'll use.

The quadratic equation for x x translates to the following recurrence for a n a_n :

a n + 2 + a n + 1 a n = 0 a_{n+2}+a_{n+1}-a_n=0

We want to find a 10 a_{10} . We started with a 1 = 1 a_1=-1 . Trivially, a 0 = 1 + 1 = 2 a_0=1+1=2 . Together with the recurrence, these two values are enough to calculate the remaining a n a_n values we need; a 2 = a 0 a 1 = 3 a_2=a_0-a_1=3 , a 3 = a 1 a 0 = 4 a_3=a_1-a_0=-4 , etc., up to a 10 = 123 a_{10}=\boxed{123} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...