I can't take this Heat!

A system consists of two chambers, one is filled with a gas of molecules ( P o , V o , T o ) (P_o,V_o,T_o) while, the other chamber is vacuum . The Piston is held by a spring .

Find the heat capacity C \displaystyle C ( in J/K ) of the system, such that when the gas is released, the piston touches the right wall and the spring is relaxed.

Details and Assumptions:
\bullet The gas is Monoatomic in nature.
\bullet P o = 1.5 a t m \displaystyle P_o = 1.5 atm
\bullet V o = 3.5 L \displaystyle V_o = 3.5 L
\bullet T o = 22 7 o C \displaystyle T_o = 227^oC
\bullet k = 150 N / m \displaystyle k = 150 N/m


The answer is 2.1278.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aniket Sanghi
Dec 29, 2016

It's a polytropic process with n = -1.

As kx = PA and V is directly proportional to x and hence P V 1 = c o n s t a n t P {V}^{-1} = constant

Will it be in equilibrium as you said?

Md Junaid - 3 years, 3 months ago
Rahul Badenkal
Jul 4, 2015

The compression in the spring at an instant can be given as x = V A x 0 = V 0 A x=\frac { V }{ A } \\ { x }_{ 0 }=\frac { { V }_{ 0 } }{ A }

Lets's assume the process is a quasi-equilibrium process. Therefore the pressure in the gas at any instant is the pressure exerted by the spring P . A = k ( V A ) { P }.A=k(\frac { V }{ A } ) . Now from gas equation P V = m R T ( k V A 2 ) V = m R T V 2 = m R A 2 k T PV=mRT\\ (k\frac { V }{ { A }^{ 2 } } )V=mRT\\ { V }^{ 2 }=\frac { mR{ A }^{ 2 } }{ k } T

Work done by gas = work done by spring 1 2 k ( x 2 x 0 2 ) = 1 2 k ( V 2 A 2 V 0 2 A 2 ) = 1 2 k ( m R A 2 k T A 2 V 0 2 A 2 ) = 1 2 m R T 1 2 k V 0 2 A 2 \frac { 1 }{ 2 } k({ x }^{ 2 }-{ { x }_{ 0 } }^{ 2 })=\frac { 1 }{ 2 } k({ \frac { { V }^{ 2 } }{ {A}^{2} } }-\frac { { { V }_{ 0 } }^{ 2 } }{ { A }^{ 2 } } )\\ \qquad \qquad \qquad =\frac { 1 }{ 2 } k({ \frac { \frac { mR{ A }^{ 2 } }{ k } T }{ { A }^{ 2 } } }-\frac { { { V }_{ 0 } }^{ 2 } }{ { A }^{ 2 } } )\\ \qquad \qquad \qquad =\frac { 1 }{ 2 } mRT\quad -\quad \frac { 1 }{ 2 } \frac { k{ { V }_{ 0 } }^{ 2 } }{ { A }^{ 2 } }

From 1st law : U = Q i n W o u t Q i n = U + W o u t Q i n = 3 2 m R ( T T 0 ) + ( 1 2 m R T 1 2 k V 0 2 A 2 ) Q i n = 3 2 m R T + 1 2 m R T + c o n s t a n t \triangle U={ Q }_{ in }-{ W }_{ out }\\ { Q }_{ in }=\triangle U+{ W }_{ out }\\ { Q }_{ in }=\frac { 3 }{ 2 } mR(T-{ T }_{ 0 })\quad +\quad (\frac { 1 }{ 2 } mRT\quad -\quad \frac { 1 }{ 2 } \frac { k{ { V }_{ 0 } }^{ 2 } }{ { A }^{ 2 } } )\\ { Q }_{ in }=\frac { 3 }{ 2 } mRT\quad +\quad \frac { 1 }{ 2 } mRT\quad +\quad constant

H e a t c a p a c i t y = d Q i n d T = 3 2 m R + 1 2 m R = 2 m R = 2 P 0 V 0 T 0 ( i n S . I u n i t s ) = 2.128 J / K Heat\quad capacity=\frac { d{ Q }_{ in } }{ dT } =\frac { 3 }{ 2 } mR+\frac { 1 }{ 2 } mR=\quad 2mR\\ \qquad \qquad \qquad \qquad \qquad \quad \quad =\quad 2\frac { { { P } }_{ 0 }{ V }_{ 0 } }{ { T }_{ 0 } } (in\quad S.I\quad units)\\ \qquad \qquad \qquad \qquad \qquad \quad \quad =\quad 2.128\quad J/K

@Rahul Badenkal why i am not able to get the answer by method if i use p=kx/a and then v=ax now on dividing the p and v , we got p/v=constant , and then treat this as polytropic process and apply the formula of c for that case ?

Rudraksh Sisodia - 5 years ago

Log in to reply

Okay. If the process undergone by the gas is p/v=c(constant), then work done=pdv. Integrate that by substituting p=cv, between limits Vo to V. You get W = pV/2 - poVo/2 = mRT/2 - poVo/2.

Now dU = mcdT or deltaU = 3/2mc(T-To).

Now Qin = 3/2mc(T) + mRT/2 - poVo/2 - 3/2mcTo

So dQin/dT = 2mR = 2poVo/To.

Rahul Badenkal - 5 years ago

https://brilliant.org/profile/nishant-1e4wj4/sets/target-jee-advanced-physics/293774/problem/a-classical-mechanics-problem-by-nishant-rai-3/ ( i am using the @Nishu sharma's method there )

Rudraksh Sisodia - 5 years ago

yar shit i thought it to be specific heat capacity.

aryan goyat - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...