A geometry problem by Mahan Farzan

Geometry Level 5

tan 2 1 + tan 2 2 + + tan 2 8 9 = ? \large \tan^2 1^{\circ}+\tan^2 2^{\circ} + \cdots + \tan^2 89^{\circ} = \, ?

Give your answer to 1 decimal place.


The answer is 5310.3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mahan Farzan
Sep 2, 2016

tan ( 90 θ ) = C 1 90 t C 3 90 t 3 + . . . C 87 90 t 87 + C 89 90 t 89 1 C 2 90 t 2 + . . . + C 88 90 t 88 t 90 ( t = tan θ , x = t 2 ) \tan(90\theta)=\frac{C^{90}_1t-C^{90}_3t^3+...-C^{90}_{87}t^{87}+C^{90}_{89}t^{89}} {1-C^{90}_2t^2+...+C^{90}_{88}t^{88}-t^{90}}\ \ (t=\tan\theta,x=t^2)

1 C 2 90 x + . . . + C 88 90 x 44 x 45 = 0 1-C^{90}_2x+...+C^{90}_{88}x^{44}-x^{45}=0 has roots tan 2 1 , tan 2 3 , . . . , tan 2 8 9 . \tan^21^\circ,\tan^23^\circ,...,\tan^289^\circ.

C 1 90 C 3 90 x + . . . C 87 90 x 43 + C 89 90 x 44 = 0 C^{90}_1-C^{90}_3x+...-C^{90}_{87}x^{43}+C^{90}_{89}x^{44}=0 has roots tan 2 2 , tan 2 4 , . . . , tan 2 8 8 . \tan^22^\circ,\tan^24^\circ,...,\tan^288^\circ.

tan 2 1 + tan 2 2 + tan 2 3 + . . . + tan 2 8 9 = C 88 90 + C 87 90 C 89 90 = 15931 3 . # \tan^21^\circ+\tan^22^\circ+\tan^23^\circ+...+\tan^289^\circ =C^{90}_{88}+\frac{C^{90}_{87}}{C^{90}_{89}}=\frac{15931}3.\#

We can also use the identity

k = 1 n 1 tan 2 ( k π 2 n ) = ( n 1 ) ( 2 n 1 ) 3 \displaystyle\sum_{k=1}^{n-1} \tan^{2}\left(\dfrac{k\pi}{2n}\right) = \dfrac{(n - 1)(2n - 1)}{3}

where in this case we have n = 90 n = 90 . A proof of this identity is given here .

Brian Charlesworth - 4 years, 9 months ago

Log in to reply

yes you're right but I prefer my solution

Mahan Farzan - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...