tan 2 1 ∘ + tan 2 2 ∘ + ⋯ + tan 2 8 9 ∘ = ?
Give your answer to 1 decimal place.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We can also use the identity
k = 1 ∑ n − 1 tan 2 ( 2 n k π ) = 3 ( n − 1 ) ( 2 n − 1 )
where in this case we have n = 9 0 . A proof of this identity is given here .
Problem Loading...
Note Loading...
Set Loading...
tan ( 9 0 θ ) = 1 − C 2 9 0 t 2 + . . . + C 8 8 9 0 t 8 8 − t 9 0 C 1 9 0 t − C 3 9 0 t 3 + . . . − C 8 7 9 0 t 8 7 + C 8 9 9 0 t 8 9 ( t = tan θ , x = t 2 )
1 − C 2 9 0 x + . . . + C 8 8 9 0 x 4 4 − x 4 5 = 0 has roots tan 2 1 ∘ , tan 2 3 ∘ , . . . , tan 2 8 9 ∘ .
C 1 9 0 − C 3 9 0 x + . . . − C 8 7 9 0 x 4 3 + C 8 9 9 0 x 4 4 = 0 has roots tan 2 2 ∘ , tan 2 4 ∘ , . . . , tan 2 8 8 ∘ .
tan 2 1 ∘ + tan 2 2 ∘ + tan 2 3 ∘ + . . . + tan 2 8 9 ∘ = C 8 8 9 0 + C 8 9 9 0 C 8 7 9 0 = 3 1 5 9 3 1 . #