4 1 ∫ 0 1 1 + t 2 ( 1 − t ) 2 t ( 1 − t ) d t = ℜ ( − z tan − 1 z )
If the equation above holds true, where z is a zero of a polynomial with integer coefficients, find ∣ z ∣ − 4 .
Clarification : ℜ ( x ) denotes the real part of the complex number x . For example, ℜ ( 3 + 4 i ) = 3 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Proof of identity:
Using the beta function and geometric series,
n = 1 ∑ ∞ n ( n 2 n ) x n = n = 1 ∑ ∞ 2 x n ∫ 0 1 t n − 1 ( 1 − t ) n − 1 d t = 2 x ∫ 0 1 1 − x t ( 1 − t ) 1 d t = 2 1 ∫ 0 1 ( t − 2 1 ) 2 + 4 x 4 − x 1 d t = 2 1 [ 4 − x 4 x tan − 1 ( ( t − 2 1 ) 4 − x 4 x ) ] 0 1 = 2 4 − x x tan − 1 4 − x x . □
Log in to reply
another way would be to differentiate the arcsin^2 series arcsin 2 ( x ) = 2 1 n = 1 ∑ ∞ n 2 ( n 2 n ) ( 2 x ) n other then that same method(+1).
Sketch of alternative proof:
We use the fact that if f ( x ) = n ∑ a n x n , then n ∑ a m n x m n = m 1 k = 1 ∑ m f ( ρ k x ) , where ρ = e 2 i π / m .
Let f ( x ) = 2 4 − x x tan − 1 4 − x x = n = 1 ∑ ∞ n ( n 2 n ) x n . Through the above fact, we know that
n = 1 ∑ ∞ n ( 4 n 8 n ) 1 = f ( i ) + f ( − 1 ) + f ( − i ) + f ( 1 )
and
n = 1 ∑ ∞ n ( 2 n 4 n ) 1 = f ( 1 ) + f ( − 1 ) .
Also, since ∫ 0 1 2 t 4 n − 1 ( 1 − t ) 4 n − 1 d t = n ( 4 n 8 n ) 1 and ∫ 0 1 t 2 n − 1 ( 1 − t ) 2 n − 1 d t = n ( 2 n 4 n ) 1 ,
n = 1 ∑ ∞ n ( 4 n 8 n ) 1 = ∫ 0 1 1 − t 4 ( 1 − t ) 4 2 t 3 ( 1 − t ) 3 d t
and
n = 1 ∑ ∞ n ( 2 n 4 n ) 1 = ∫ 0 1 1 − t 2 ( 1 − t ) 2 t ( 1 − t ) d t .
Hence,
∫ 0 1 1 + t 2 ( 1 − t ) 2 t ( 1 − t ) d t = ∫ 0 1 1 − t 2 ( 1 − t ) 2 t ( 1 − t ) d t − ∫ 0 1 1 − t 4 ( 1 − t ) 4 2 t 3 ( 1 − t ) 3 d t = − f ( i ) − f ( − i ) .
Question was an overhead bouncer. :P ,very elegant solution.btw.
It is much simpler to do integration by parts. You simply write: 1 + t 2 ( 1 − t ) 2 t ( 1 − t ) = 2 1 ( i + t ( 1 − t ) 1 + − i + t ( 1 − t ) 1 ) = 2 1 ( 4 1 + i − ( t − 2 1 ) 2 1 + 4 1 − i − ( t − 2 1 ) 2 1 )
You then simply integrate by substituting t − 1 / 2 = u ∗ i 1 / 4 − i , i 1 / 4 − i d u = d t and t − 1 / 2 = w ∗ i 1 / 4 + i , i 1 / 4 + i d w = d t . This gives us: 2 1 ∫ ( 4 1 + i − ( t − 2 1 ) 2 1 + 4 1 − i − ( t − 2 1 ) 2 1 ) d t = 4 1 − i i 2 1 ∫ 1 − u 2 1 d u + 4 1 + i i 2 1 ∫ 1 − w 2 1 d w = 1 − 4 i i arctan u + 1 + 4 i i arctan w = − 1 − 4 i i arctan 1 − 4 i i ( 2 t − 1 ) − 1 + 4 i i arctan 1 + 4 i i ( 2 t − 1 )
Finally, evaluating the integral we get: [ − 1 − 4 i i arctan 1 − 4 i i ( 2 t − 1 ) − 1 + 4 i i arctan 1 + 4 i i ( 2 t − 1 ) ] 0 1 = − 2 ( 1 − 4 i i arctan i 1 − 4 i i + 1 + 4 i i arctan 1 + 4 i i ) = − 4 ℜ ( 1 + 4 i i arctan 1 + 4 i i )
Therefore z = 1 + 4 i i .
Problem Loading...
Note Loading...
Set Loading...
We tackle the integral directly using the series 1 + x 2 x = − n = 1 ∑ ∞ ( − 1 ) n x 2 n − 1 :
∫ 0 1 1 + t 2 ( 1 − t ) 2 t ( 1 − t ) d t = − n = 1 ∑ ∞ ( − 1 ) n ∫ 0 1 t 2 n − 1 ( 1 − t ) 2 n − 1 d t = − n = 1 ∑ ∞ ( − 1 ) n B ( 2 n − 1 , 2 n − 1 ) = − n = 1 ∑ ∞ n ( 2 n 4 n ) ( − 1 ) n .
It is known that n = 1 ∑ ∞ n ( n 2 n ) x n = 2 4 − x x tan − 1 4 − x x (see comments for proof). Hence,
n = 1 ∑ ∞ n ( 2 n 4 n ) u 2 n = n = 1 ∑ ∞ n ( n 2 n ) u n + n = 1 ∑ ∞ n ( n 2 n ) ( − u ) n = 2 4 − u u tan − 1 4 − u u + 2 4 + u − u tan − 1 4 + u − u .
Substituting u = i above, we thus have,
n = 1 ∑ ∞ n ( 2 n 4 n ) ( − 1 ) n = 2 4 − i i tan − 1 4 − i i + 2 4 + i − i tan − 1 4 + i − i .
It is trivial to show 4 − i i = 4 + i − i . It is also easy to show that w tan − 1 w = w tan − 1 w (exercise).
Therefore, since z + z = 2 R e ( z ) , we finally have
4 1 ∫ 0 1 1 + t 2 ( 1 − t ) 2 t ( 1 − t ) d t = − 4 1 n = 1 ∑ ∞ n ( 2 n 4 n ) ( − 1 ) n = − R e ( 4 − i i tan − 1 4 − i i ) ,
so ∣ z ∣ − 4 = ∣ ∣ ∣ ∣ ∣ 4 − i i ∣ ∣ ∣ ∣ ∣ − 4 = 1 7 . (Note that z can be any root of 1 7 z 4 + 2 z 2 + 1 = 0 , eg z = 4 + i − i .)