Agglomeration Of Tricks

Calculus Level 5

1 4 0 1 t ( 1 t ) 1 + t 2 ( 1 t ) 2 d t = ( z tan 1 z ) \large \dfrac14 \int_0^1 \dfrac{t (1-t)}{1+t^2(1-t)^2} \, dt = \Re(-z \tan^{-1} z )

If the equation above holds true, where z z is a zero of a polynomial with integer coefficients, find z 4 |z|^{-4} .

Clarification : ( x ) \Re(x) denotes the real part of the complex number x x . For example, ( 3 + 4 i ) = 3 \Re(3+4i) = 3 .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jake Lai
May 22, 2016

We tackle the integral directly using the series x 1 + x 2 = n = 1 ( 1 ) n x 2 n 1 \displaystyle \frac{x}{1+x^2} = -\sum_{n=1}^\infty (-1)^n x^{2n-1} :

0 1 t ( 1 t ) 1 + t 2 ( 1 t ) 2 d t = n = 1 ( 1 ) n 0 1 t 2 n 1 ( 1 t ) 2 n 1 d t = n = 1 ( 1 ) n B ( 2 n 1 , 2 n 1 ) = n = 1 ( 1 ) n n ( 4 n 2 n ) . \begin{aligned} \int_0^1 \frac{t(1-t)}{1+t^2(1-t)^2} \ dt &= -\sum_{n=1}^\infty (-1)^n \int_0^1 t^{2n-1}(1-t)^{2n-1} \ dt \\ &= -\sum_{n=1}^\infty (-1)^n \mathrm{B}(2n-1,2n-1) \\ &= -\sum_{n=1}^\infty \frac{(-1)^n}{n\binom{4n}{2n}}. \end{aligned}

It is known that n = 1 x n n ( 2 n n ) = 2 x 4 x tan 1 x 4 x \displaystyle \sum_{n=1}^\infty \frac{x^n}{n\binom{2n}{n}} = 2\sqrt{\frac{x}{4-x}} \tan^{-1} \sqrt{\frac{x}{4-x}} (see comments for proof). Hence,

n = 1 u 2 n n ( 4 n 2 n ) = n = 1 u n n ( 2 n n ) + n = 1 ( u ) n n ( 2 n n ) = 2 u 4 u tan 1 u 4 u + 2 u 4 + u tan 1 u 4 + u . \begin{aligned} \sum_{n=1}^\infty \frac{u^{2n}}{n\binom{4n}{2n}} &= \sum_{n=1}^\infty \frac{u^n}{n\binom{2n}{n}} + \sum_{n=1}^\infty \frac{(-u)^n}{n\binom{2n}{n}} \\ &= 2\sqrt{\frac{u}{4-u}} \tan^{-1} \sqrt{\frac{u}{4-u}} + 2\sqrt{\frac{-u}{4+u}} \tan^{-1} \sqrt{\frac{-u}{4+u}}. \end{aligned}

Substituting u = i u = i above, we thus have,

n = 1 ( 1 ) n n ( 4 n 2 n ) = 2 i 4 i tan 1 i 4 i + 2 i 4 + i tan 1 i 4 + i . \begin{aligned} \sum_{n=1}^\infty \frac{(-1)^n}{n\binom{4n}{2n}} &= 2\sqrt{\frac{i}{4-i}} \tan^{-1} \sqrt{\frac{i}{4-i}} + 2\sqrt{\frac{-i}{4+i}} \tan^{-1} \sqrt{\frac{-i}{4+i}}. \end{aligned}

It is trivial to show i 4 i = i 4 + i \displaystyle \sqrt{\frac{i}{4-i}} = \overline{\sqrt{\frac{-i}{4+i}}} . It is also easy to show that w tan 1 w = w tan 1 w \overline{w \tan^{-1} w} = \overline{w} \tan^{-1} \overline{w} (exercise).

Therefore, since z + z = 2 R e ( z ) z+\overline{z} = 2\mathrm{Re}(z) , we finally have

1 4 0 1 t ( 1 t ) 1 + t 2 ( 1 t ) 2 d t = 1 4 n = 1 ( 1 ) n n ( 4 n 2 n ) = R e ( i 4 i tan 1 i 4 i ) , \begin{aligned} \frac{1}{4} \int_0^1 \frac{t(1-t)}{1+t^2(1-t)^2} \ dt &= -\frac{1}{4} \sum_{n=1}^\infty \frac{(-1)^n}{n\binom{4n}{2n}} \\ &= -\mathrm{Re}(\sqrt{\frac{i}{4-i}} \tan^{-1} \sqrt{\frac{i}{4-i}}), \end{aligned}

so z 4 = i 4 i 4 = 17 \displaystyle |z|^{-4} = \left| \sqrt{\frac{i}{4-i}} \right|^{-4} = \boxed{17} . (Note that z z can be any root of 17 z 4 + 2 z 2 + 1 = 0 17z^4+2z^2+1 = 0 , eg z = i 4 + i \displaystyle z = \sqrt{\frac{-i}{4+i}} .)

Proof of identity:

Using the beta function and geometric series,

n = 1 x n n ( 2 n n ) = n = 1 x n 2 0 1 t n 1 ( 1 t ) n 1 d t = x 2 0 1 1 1 x t ( 1 t ) d t = 1 2 0 1 1 ( t 1 2 ) 2 + 4 x 4 x d t = 1 2 [ 4 x 4 x tan 1 ( ( t 1 2 ) 4 x 4 x ) ] 0 1 = 2 x 4 x tan 1 x 4 x . \begin{aligned} \sum_{n=1}^\infty \frac{x^n}{n\binom{2n}{n}} &= \sum_{n=1}^\infty \frac{x^n}{2} \int_0^1 t^{n-1}(1-t)^{n-1} \ dt \\ &= \frac{x}{2} \int_0^1 \frac{1}{1-xt(1-t)} \ dt \\ &= \frac{1}{2} \int_0^1 \frac{1}{(t-\frac{1}{2})^2 + \frac{4-x}{4x}} \ dt \\ &= \frac{1}{2} \left[ \sqrt{\frac{4x}{4-x}} \tan^{-1} \left( (t-\tfrac{1}{2})\sqrt{\frac{4x}{4-x}} \right) \right]_0^1 \\ &= 2 \sqrt{\frac{x}{4-x}} \tan^{-1} \sqrt{\frac{x}{4-x}}. \qquad \square \end{aligned}

Jake Lai - 5 years ago

Log in to reply

another way would be to differentiate the arcsin^2 series arcsin 2 ( x ) = 1 2 n = 1 ( 2 x ) n n 2 ( 2 n n ) \arcsin^2(x) = \dfrac{1}{2}\sum_{n=1}^\infty \dfrac{(2x)^n}{n^2 \binom{2n}{n}} other then that same method(+1).

Aareyan Manzoor - 5 years ago

Sketch of alternative proof:

We use the fact that if f ( x ) = n a n x n \displaystyle f(x) = \sum_n a_nx^n , then n a m n x m n = 1 m k = 1 m f ( ρ k x ) \displaystyle \sum_n a_{mn}x^{mn} = \frac{1}{m} \sum_{k=1}^m f(\rho^kx) , where ρ = e 2 i π / m \rho = e^{2i\pi/m} .

Let f ( x ) = 2 x 4 x tan 1 x 4 x = n = 1 x n n ( 2 n n ) \displaystyle f(x) = 2 \sqrt{\frac{x}{4-x}} \tan^{-1} \sqrt{\frac{x}{4-x}} = \sum_{n=1}^\infty \frac{x^n}{n\binom{2n}{n}} . Through the above fact, we know that

n = 1 1 n ( 8 n 4 n ) = f ( i ) + f ( 1 ) + f ( i ) + f ( 1 ) \sum_{n=1}^\infty \frac{1}{n\binom{8n}{4n}} = f(i)+f(-1)+f(-i)+f(1)

and

n = 1 1 n ( 4 n 2 n ) = f ( 1 ) + f ( 1 ) . \sum_{n=1}^\infty \frac{1}{n\binom{4n}{2n}} = f(1)+f(-1).

Also, since 0 1 2 t 4 n 1 ( 1 t ) 4 n 1 d t = 1 n ( 8 n 4 n ) \displaystyle \int_0^1 2t^{4n-1}(1-t)^{4n-1} \ dt = \frac{1}{n\binom{8n}{4n}} and 0 1 t 2 n 1 ( 1 t ) 2 n 1 d t = 1 n ( 4 n 2 n ) \displaystyle \int_0^1 t^{2n-1}(1-t)^{2n-1} \ dt = \frac{1}{n\binom{4n}{2n}} ,

n = 1 1 n ( 8 n 4 n ) = 0 1 2 t 3 ( 1 t ) 3 1 t 4 ( 1 t ) 4 d t \sum_{n=1}^\infty \frac{1}{n\binom{8n}{4n}} = \int_0^1 \frac{2t^3(1-t)^3}{1-t^4(1-t)^4} \ dt

and

n = 1 1 n ( 4 n 2 n ) = 0 1 t ( 1 t ) 1 t 2 ( 1 t ) 2 d t . \sum_{n=1}^\infty \frac{1}{n\binom{4n}{2n}} = \int_0^1 \frac{t(1-t)}{1-t^2(1-t)^2} \ dt.

Hence,

0 1 t ( 1 t ) 1 + t 2 ( 1 t ) 2 d t = 0 1 t ( 1 t ) 1 t 2 ( 1 t ) 2 d t 0 1 2 t 3 ( 1 t ) 3 1 t 4 ( 1 t ) 4 d t = f ( i ) f ( i ) . \begin{aligned} \int_0^1 \frac{t(1-t)}{1+t^2(1-t)^2} \ dt &= \int_0^1 \frac{t(1-t)}{1-t^2(1-t)^2} \ dt - \int_0^1 \frac{2t^3(1-t)^3}{1-t^4(1-t)^4} \ dt \\ &= -f(i)-f(-i). \end{aligned}

Jake Lai - 5 years ago

Question was an overhead bouncer. :P ,very elegant solution.btw.

Parth Lohomi - 5 years ago

It is much simpler to do integration by parts. You simply write: t ( 1 t ) 1 + t 2 ( 1 t ) 2 = 1 2 ( 1 i + t ( 1 t ) + 1 i + t ( 1 t ) ) = 1 2 ( 1 1 4 + i ( t 1 2 ) 2 + 1 1 4 i ( t 1 2 ) 2 ) \frac{t(1-t)}{1+{t}^{2} {(1-t)}^{2}}=\frac{1}{2}(\frac{1}{i+t (1-t)}+\frac{1}{-i+t (1-t)})=\frac{1}{2}(\frac{1}{\frac{1}{4}+i-{(t-\frac{1}{2})}^{2}}+\frac{1}{\frac{1}{4}-i-{(t-\frac{1}{2})}^{2}})

You then simply integrate by substituting t 1 / 2 = u i 1 / 4 i t-1/2=u*i \sqrt{1/4-i} , i 1 / 4 i d u = d t i\sqrt{1/4-i} du=dt and t 1 / 2 = w i 1 / 4 + i t-1/2=w*i\sqrt{1/4+i} , i 1 / 4 + i d w = d t i\sqrt{1/4+i} dw=dt . This gives us: 1 2 ( 1 1 4 + i ( t 1 2 ) 2 + 1 1 4 i ( t 1 2 ) 2 ) d t = i 1 4 i 1 2 1 1 u 2 d u + i 1 4 + i 1 2 1 1 w 2 d w = i 1 4 i arctan u + i 1 + 4 i arctan w = i 1 4 i arctan i ( 2 t 1 ) 1 4 i i 1 + 4 i arctan i ( 2 t 1 ) 1 + 4 i \frac{1}{2}\int(\frac{1}{\frac{1}{4}+i-{(t-\frac{1}{2})}^{2}}+\frac{1}{\frac{1}{4}-i-{(t-\frac{1}{2})}^{2}}) dt=\frac{i}{\sqrt{\frac{1}{4}-i}}\frac{1}{2}\int\frac{1}{1-{u}^{2}} du+\frac{i}{\sqrt{\frac{1}{4}+i}}\frac{1}{2}\int\frac{1}{1-{w}^{2}} dw=\frac{i}{\sqrt{1-4i}}\arctan{u}+\frac{i}{\sqrt{1+4i}}\arctan{w}=-\frac{i}{\sqrt{1-4i}}\arctan{\frac{i(2t-1)}{\sqrt{1-4i}}}-\frac{i}{\sqrt{1+4i}}\arctan{\frac{i(2t-1)}{\sqrt{1+4i}}}

Finally, evaluating the integral we get: [ i 1 4 i arctan i ( 2 t 1 ) 1 4 i i 1 + 4 i arctan i ( 2 t 1 ) 1 + 4 i ] 0 1 = 2 ( i 1 4 i arctan i i 1 4 i + i 1 + 4 i arctan i 1 + 4 i ) = 4 ( i 1 + 4 i arctan i 1 + 4 i ) [-\frac{i}{\sqrt{1-4i}}\arctan{\frac{i(2t-1)}{ \sqrt{1-4i}}}-\frac{i}{\sqrt{1+4i}}\arctan{\frac{i(2t-1)}{\sqrt{1+4i}}}]_{0}^{1}=-2(\frac{i}{\sqrt{1-4i}}\arctan{\frac{i}{i \sqrt{1-4i}}}+\frac{i}{\sqrt{1+4i}}\arctan{\frac{i}{\sqrt{1+4i}}})=-4\Re {(\frac{i}{\sqrt{1+4i}}\arctan{\frac{i}{\sqrt{1+4i}}})}

Therefore z = i 1 + 4 i z=\frac{i}{\sqrt{1+4i}} .

Jeremi Litarowicz - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...