I don't want English solution

Calculus Level 5

n = 1 1 64 n 2 1 \large \sum_{n=1}^\infty\dfrac1{64n^2-1}

If the series above equals to 1 A 1 B π cot ( A B π ) \dfrac1A - \dfrac{1}B\pi \cot\left(\dfrac AB \pi\right) for positive integers A A and B B , find the value of A + B A+B .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Maggie Miller
Aug 12, 2015

Recall n = 1 1 n 2 a 2 = 1 2 a 2 π cot ( π a ) 2 a \displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2-a^2}=\frac{1}{2a^2}-\frac{\pi\cot(\pi a)}{2a} .

Then n = 1 1 64 n 2 1 = 1 64 n = 1 1 n 2 ( 1 8 ) 2 \displaystyle\sum_{n=1}^{\infty}\frac{1}{64n^2-1}=\frac{1}{64}\sum_{n=1}^{\infty}\frac{1}{n^2-\left(\frac{1}{8}\right)^2}

= 1 64 ( 1 2 ( 1 8 ) 2 π cot ( π 8 ) 2 ( 1 8 ) ) = 1 2 1 16 π cot ( 2 π 16 ) . \displaystyle=\frac{1}{64}\left(\frac{1}{2\left(\frac{1}{8}\right)^2}-\frac{\pi\cot\left(\frac{\pi}{8}\right)}{2\left(\frac{1}{8}\right)}\right)=\frac{1}{2}-\frac{1}{16}\pi\cot\left(\frac{2\pi}{16}\right).

Therefore, A = 2 , B = 16 A=2,B=16 , so A + B = 18 A+B=\boxed{18} .

YAY correct! The equation in your first line is one of my favorite equations!

Pi Han Goh - 5 years, 10 months ago

Good solution!

Can you prove the equation you used ?

Hasan Kassim - 5 years, 10 months ago

Log in to reply

Hint: Logarithmic differentiation on this .

Pi Han Goh - 5 years, 10 months ago

Log in to reply

Thanks! That theorem is really useful

Hasan Kassim - 5 years, 10 months ago

Is there an easier/more intuitive way to prove the first line than the Weierstrass factorization theorem?

Katherine Sanden - 5 years, 10 months ago

Log in to reply

First note that the sum is defined for all a a except the integral values, and Harmonic Numbers can take all real arguments except negative integers. Recall :

H x = lim k ( H k n = 1 k 1 n + x ) \displaystyle H_x = \lim_{k\to \infty} \big( H_k - \sum_{n=1}^{k} \frac{1}{n+x} \big)

Hence:

H x H y = lim k ( H k n = 1 k 1 n + x ) lim k ( H k n = 1 k 1 n + y ) \displaystyle H_x -H_y = \lim_{k\to \infty} \big( H_k - \sum_{n=1}^{k} \frac{1}{n+x} \big) - \lim_{k\to \infty} \big( H_k - \sum_{n=1}^{k} \frac{1}{n+y} \big)

= lim k ( n = 1 k 1 n + y n = 1 k 1 n + x ) \displaystyle = \lim_{k\to \infty} \big(\sum_{n=1}^{k} \frac{1}{n+y}-\sum_{n=1}^{k} \frac{1}{n+x} \big)

= n = 1 ( 1 n + y 1 n + x ) \displaystyle = \sum_{n=1}^{\infty} \bigg( \frac{1}{n+y} - \frac{1}{n+x} \bigg)

Now rewrite our sum as:

S = 1 2 a n = 1 ( 1 n a 1 n + a ) = 1 2 a ( H a H a ) \displaystyle S = \frac{1}{2a} \sum_{n=1}^{\infty} \bigg(\frac{1}{n-a} - \frac{1}{n+a} \bigg) = \frac{1 }{2a} ( H_a - H_{-a})

From the recurrence relation of the harmonic numbers: Replace H a H_{-a} by H 1 a 1 1 a H_{1-a} - \frac{1}{1-a} :

S = 1 2 a ( H a H 1 a + 1 1 a ) \displaystyle S= \frac{1 }{2a} (H_a - H_{1-a} + \frac{1}{1-a} )

Apply the Reflection formula for the harmonic numbers:

S = 1 2 a ( 1 a 1 1 a π cot ( π a ) + 1 1 a ) \displaystyle S = \frac{ 1 }{2a} (\frac{1}{a} - \frac{1}{1-a} - \pi \cot ( \pi a ) + \frac{1}{1-a} )

= 1 2 a 2 π cot ( π a ) 2 a \displaystyle \boxed{ = \frac{1}{2a^2} - \frac{\pi \cot (\pi a) }{2a} }

Hasan Kassim - 5 years, 10 months ago

See this .

I doubt it's simpler. But it's at least different.

Pi Han Goh - 5 years, 10 months ago

I can prove it using Harmonic Numbers, but it is not simpler than that theorem

Hasan Kassim - 5 years, 10 months ago

Log in to reply

POST POST POST!!!

Pi Han Goh - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...