I gave it a little complexity!

Q = { 1 , 7 , 2 , 9 } \large Q=\{ 1,7,2,9 \}

a). Total number of subsets of P ( Q ) P(Q) is more than 1729 1729 .

b). Number of subsets of Q Q = Cardinal no. of P ( Q ) P(Q) .

c). There exist some t t such that t P ( Q ) and t P ( Q ) t \in P(Q) \ \text{and} \ t \subseteq P(Q) .

d). If y P ( Q ) y Q y \in P(Q) \implies y \subseteq Q

e). Number. of elements common in Q Q and P ( Q ) P(Q) is 0. 0.

f). Number. of set(s) which is(are) subsets of both Q Q and P ( Q ) P(Q) is 0. 0.

Which of the above statements are correct?

Note : P ( Q ) P(Q) represents the Power Set (Set of all the subsets of the given set) of Q Q .


Join the Brilliant Classes and enjoy the excellence. Also checkout Target Assignment #1 for JEE.
b),d),f) a),b),c),d),f) d),f) None of the given. a),b),c),d),e)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sandeep Bhardwaj
May 29, 2015

G i v e n : Q = { 1 , 7 , 2 , 9 } P ( Q ) = { ϕ , { 1 } , { 7 } , { 2 } , { 9 } , { 1 , 7 } , { 1 , 2 } , { 1 , 9 } , { 7 , 2 } , { 7 , 9 } , { 2 , 9 } , { 1 , 7 , 2 } , { 1 , 7 , 9 } , { 1 , 2 , 9 } , { 7 , 2 , 9 } , { 1 , 7 , 2 , 9 } } Given : \quad Q=\{ 1,7,2,9 \} \\ P(Q)=\color{#D61F06}{\{} \phi, \{1\},\{ 7\}, \{ 2\}, \{9 \}, \{1,7 \}, \\ \{1,2 \}, \{1,9 \}, \{7,2 \}, \{7,9 \}, \\ \{2,9 \}, \{1,7,2 \}, \{1,7,9 \}, \\ \{ 1,2,9\}, \{7,2,9 \}, \{1,7,2,9 \} \color{#D61F06}{\}}

No. of elements in the set Q = 4 No. of elements in the set P ( Q ) = 16 Total no. of subsets of the set Q = 2 4 = 16 Total no. of subsets of the set P ( Q ) = 2 ( 2 4 ) \boxed{ \text{No. of elements in the set } Q=4 \\ \text{No. of elements in the set } P(Q)=16 \\ \text{Total no. of subsets of the set } Q=2^4=16 \\ \text{Total no. of subsets of the set } P(Q)=2^{\left( 2^4 \right)}}

a). Total no. of subsets of P ( Q ) = 2 ( 2 4 ) P(Q)=2^{\left( 2^4 \right)} which is more than 1729 1729 . Hence this statement is correct.

b). No. of subsets of Q Q = Cardinal no. of P ( Q ) P(Q) = 2 4 2^4 . Hence this statement is correct.

c). ϕ P ( Q ) and ϕ P ( Q ) \phi \in P(Q) \ \text{and} \ \phi \subseteq P(Q) . Hence there exists some t t and t = ϕ t=\phi . Hence this statement is correct.

d). P ( Q ) P(Q) is the set of all the subsets of Q Q . Hence if y P ( Q ) y Q y \in P(Q) \implies y \subseteq Q . So this statement is correct.

e). There is no elements common in Q Q and P ( Q ) P(Q) . Hence the statement is correct.

f). ϕ \phi is the subset of both Q Q and P ( Q ) P(Q) . So, no. of set(s) which is(are) subsets of both Q Q and P ( Q ) P(Q) is 1 1 , not zero. Hence this statement is incorrect.

From the above explanations, one can easily say that the correct statements are a ) , b ) , c ) , d ) , e ) \boxed{a), \ b), \ c), \ d), \ e)}

enjoy !

Moderator note:

Can you prove the claim:

Number of set(s) which is(are) subsets of both Q Q and P ( Q ) P(Q) is 1 1 , not zero.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...