This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
There's a slightly shorter approach to this problem.
Hint : Prove that 2 cot ( 2 x ) = tan ( x ) − cot ( x ) .
Thanks for sharing the more general form of
r = 1 ∑ 2 n − 1 − 1 tan 2 ( 2 n r π )
Problem Loading...
Note Loading...
Set Loading...
x = 0 ∑ 7 tan 2 1 6 π x = x = 1 ∑ 7 ( sec 2 1 6 π x − 1 ) = cos 2 1 6 π 1 + cos 2 1 6 2 π 1 + cos 2 1 6 3 π 1 + cos 2 1 6 4 π 1 + cos 2 1 6 5 π 1 + cos 2 1 6 6 π 1 + cos 2 1 6 7 π 1 − 7 = cos 2 1 6 π 1 + cos 2 1 6 2 π 1 + cos 2 1 6 3 π 1 + cos 2 4 π 1 + sin 2 1 6 3 π 1 + sin 2 1 6 2 π 1 + sin 2 1 6 π 1 − 7 = sin 2 1 6 π 1 + cos 2 1 6 π 1 + sin 2 1 6 2 π 1 + cos 2 1 6 2 π 1 + sin 2 1 6 3 π 1 + cos 2 1 6 3 π 1 + 2 − 7 = sin 2 1 6 π cos 2 1 6 π 1 + sin 2 1 6 2 π cos 2 1 6 2 π 1 + sin 2 1 6 3 π cos 2 1 6 3 π 1 − 5 = sin 2 8 π 4 + sin 2 4 π 4 + sin 2 8 3 π 4 − 5 = sin 2 8 π 4 + cos 2 8 π 4 + 8 − 5 = sin 2 4 π 1 6 + 3 = 3 2 + 3 = 3 5