Vaporized

Geometry Level 4

Find the value of x = 0 7 tan 2 π x 16 \displaystyle\sum _{ x=0 }^{ 7 }{ { \tan }^{ 2 }\frac { \pi x }{ 16 } } .


The answer is 35.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x = 0 7 tan 2 π x 16 = x = 1 7 ( sec 2 π x 16 1 ) = 1 cos 2 π 16 + 1 cos 2 2 π 16 + 1 cos 2 3 π 16 + 1 cos 2 4 π 16 + 1 cos 2 5 π 16 + 1 cos 2 6 π 16 + 1 cos 2 7 π 16 7 = 1 cos 2 π 16 + 1 cos 2 2 π 16 + 1 cos 2 3 π 16 + 1 cos 2 π 4 + 1 sin 2 3 π 16 + 1 sin 2 2 π 16 + 1 sin 2 π 16 7 = 1 sin 2 π 16 + 1 cos 2 π 16 + 1 sin 2 2 π 16 + 1 cos 2 2 π 16 + 1 sin 2 3 π 16 + 1 cos 2 3 π 16 + 2 7 = 1 sin 2 π 16 cos 2 π 16 + 1 sin 2 2 π 16 cos 2 2 π 16 + 1 sin 2 3 π 16 cos 2 3 π 16 5 = 4 sin 2 π 8 + 4 sin 2 π 4 + 4 sin 2 3 π 8 5 = 4 sin 2 π 8 + 4 cos 2 π 8 + 8 5 = 16 sin 2 π 4 + 3 = 32 + 3 = 35 \begin{aligned} \sum_{x=0}^7 \tan^2{\frac{\pi x}{16}} & = \sum_{x=\color{#D61F06}{1}}^7 \left( \sec^2{\frac{\pi x}{16}} - 1\right) \\ & = \frac{1}{\cos^2{\frac{\pi}{16}}} + \frac{1}{\cos^2{\frac{2\pi}{16}}} + \frac{1}{\cos^2{\frac{3\pi}{16}}} + \frac{1}{\cos^2{\color{#D61F06}{\frac{4\pi}{16}}}} \\ & \quad \quad + \color{#3D99F6}{\frac{1}{\cos^2{\frac{5\pi}{16}}} + \frac{1}{\cos^2{\frac{6\pi}{16}}} + \frac{1}{\cos^2{\frac{7\pi}{16}}}} - 7 \\ & = \frac{1}{\cos^2{\frac{\pi}{16}}} + \frac{1}{\cos^2{\frac{2\pi}{16}}} + \frac{1}{\cos^2{\frac{3\pi}{16}}} + \frac{1}{\cos^2{\color{#D61F06}{\frac{\pi}{4}}}} \\ & \quad \quad + \color{#3D99F6}{\frac{1}{\sin^2{\frac{3\pi}{16}}} + \frac{1}{\sin^2{\frac{2\pi}{16}}} + \frac{1}{\sin^2{\frac{\pi}{16}}}} - 7 \\ & = \frac{1}{\sin^2{\frac{\pi}{16}}} + \frac{1}{\cos^2{\frac{\pi}{16}}} + \frac{1}{\sin^2{\frac{2\pi}{16}}} + \frac{1}{\cos^2{\frac{2\pi}{16}}} \\ & \quad \quad + \frac{1}{\sin^2{\frac{3\pi}{16}}} + \frac{1}{\cos^2{\frac{3\pi}{16}}} + \color{#D61F06}{2} - 7 \\ & = \frac{1}{\sin^2{\frac{\pi}{16}} \cos^2{\frac{\pi}{16}}} + \frac{1}{\sin^2{\frac{2\pi}{16}} \cos^2{\frac{2\pi}{16}}} + \frac{1}{\sin^2{\frac{3\pi}{16}} \cos^2{\frac{3\pi}{16}}} -5 \\ & = \color{#3D99F6}{\frac{4}{\sin^2{\frac{\pi}{8}}}} + \color{#D61F06}{ \frac{4}{\sin^2{\frac{\pi}{4}}}} + \color{#3D99F6} {\frac{4}{\sin^2{\frac{3\pi}{8}}}} -5 \\ & = \color{#3D99F6}{\frac{4}{\sin^2{\frac{\pi}{8}}} + \frac{4}{\cos^2{\frac{\pi}{8}}}} + \color{#D61F06}{8} - 5 = \color{#3D99F6}{\frac{16}{\sin^2{\frac{\pi}{4}}}} + 3 = \color{#3D99F6}{32} + 3 = \boxed{35} \end{aligned}

Moderator note:

There's a slightly shorter approach to this problem.

Hint : Prove that 2 cot ( 2 x ) = tan ( x ) cot ( x ) 2\cot(2x) = \tan(x) - \cot(x) .

Ronak Agarwal
Jul 4, 2015

Check this

Moderator note:

Thanks for sharing the more general form of

r = 1 2 n 1 1 tan 2 ( r π 2 n ) \sum _{ r=1 }^{ { 2 }^{ n-1 }-1 } { \tan ^{ 2 } { \left (\frac { r\pi }{ { 2 }^{ n } } \right ) } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...