Suppose a , b , c are sides of a triangle Δ A B C and the roots of the following equation. x 3 − 2 4 x 2 + 1 8 0 x − 4 2 0 = 0 . If tan A + tan B + tan C = − q p , where p and q are coprime positive integers , find the value of p + q .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
For finding the product of the cosines, we could use the following identity:
c y c ∑ sin 2 A = 2 + 2 c y c ∏ cos A
The polynomial f ( X ) = X 3 − 2 4 X 2 + 1 8 0 X − 4 2 0 has roots a , b , c . Thus the triangle has semiperimeter s = 1 2 and hence area Δ = s f ( s ) = 1 2 and hence inradius r = s Δ = 1 . Thus tan 2 1 A = s − a r = 1 2 − a 1 tan 2 1 B = 1 2 − b 1 tan 2 1 C = 1 2 − c 1 Using the substitution X = 1 2 − Y − 1 , the monic cubic with roots tan 2 1 A , tan 2 1 B and tan 2 1 C is g ( Y ) = Y 3 − 3 Y 2 + Y − 1 2 1 Using the substitution Y = Z , the monic cubic with roots tan 2 2 1 A , tan 2 2 1 B and tan 2 2 1 C is h ( Z ) = Z 3 − 7 Z 2 + 2 1 Z − 1 4 4 1 Thus tan A + tan B + tan B = = tan A tan B tan C = ( 1 − tan 2 2 1 A ) ( 1 − tan 2 2 1 B ) ( 1 − tan 2 2 1 C ) 8 tan 2 1 A tan 2 1 B tan 2 1 C − h ( 1 ) 8 g ( 0 ) = − 7 9 3 9 6 making the answer 9 6 + 7 9 3 = 8 8 9 .
U s i n g V i e t a ′ s F o r m u l a c y c ∑ a = 2 4 , c y c ∑ a b = 1 8 0 , a b c = 4 2 0 . S e m i p e r i m e t e r = s = 2 1 ∗ c y c ∑ a = 1 2 A f t e r n o r m a l m a n u p u l a t i o n s , w e g e t c y c ∑ a 2 = 2 1 6 , a n d c y c ∑ a 2 b 2 = 1 8 0 2 − 2 ∗ 4 2 0 ∗ 2 4 = 1 2 2 4 0 . Now using Heron’s formula for finding area:- ∵ f ( x ) = x 3 − 2 4 x 2 + 1 2 0 x − 4 2 0 = ( x − a ) ( x − b ) ( x − c ) ∴ [ A B C ] = s ∗ f ( s ) = 1 2 { f ( 1 2 ) ( 1 2 − a ) ( 1 2 − b ) ( 1 2 − c ) } ∴ [ A B C ] = 1 2 f ( 1 2 ) = 1 2 ⋅ 1 2 = 1 2 S i n A = b c 2 [ A B C ] = b c 2 4 , C o s A = 1 − S i n 2 A ∴ T a n A = b 2 c 2 − 2 4 2 2 4 T a n A + T a n B + T a n C = T a n A ∗ T a n B ∗ T a n C = b 2 c 2 − 2 4 2 2 4 ∗ c 2 a 2 − 2 4 2 2 4 ∗ a 2 b 2 − 2 4 2 2 4 = a 4 b 4 c 4 − 2 4 2 ∗ ∑ c y c a 2 ∗ ( a 2 b 2 c 2 ) + 2 4 4 ∗ ∑ c y c a 2 b 2 − 2 4 6 2 4 3 = 4 2 0 4 − 2 4 2 ∗ 2 1 6 ∗ 4 2 0 2 + 2 4 4 ∗ 1 2 2 4 0 − 2 4 6 2 4 3 = − 7 9 3 9 6 = − q p . p + q = 8 8 9
Note:- Answered required was negative, so on checking one of the angles is 138 degrees, so I have taken negative sign for the square root.
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Solving Triangles - Problem Solving - Hard
By Vieta's formula : ⎩ ⎪ ⎨ ⎪ ⎧ a + b + c = 2 4 a b + b c + c a = 1 8 0 a b c = 4 2 0
By sine rule : a sin A = b sin B = c sin C = k ⟹ ⎩ ⎪ ⎨ ⎪ ⎧ sin A = k a sin B = k b sin C = k c
By Heron's formula :
A △ = s ( s − a ) ( s − b ) ( s − c ) = 1 2 ( 1 2 3 − 2 4 ( 1 2 ) 2 + 1 8 0 ( 1 2 ) − 4 2 0 ) = 1 2 ( 1 2 ) = 1 2 where s = 2 a + b + c = 1 2 Note that ( x − a ) ( x − b ) ( x − c ) = x 3 − 2 4 x 2 + 1 8 0 x − 4 2 0
But A △ = 2 1 a b sin C = 2 1 a b c k ⟹ a b c k = 2 4
By cosine rule :
a 2 ⟹ cos A = b 2 + c 2 − 2 b c cos A = 2 b c b 2 + c 2 − a 2 = 2 b c a 2 + b 2 + c 2 − 2 a 2 = 2 b c 2 1 6 − 2 a 2 = b c 1 0 8 − a 2 See Note
Now, we have:
tan A + tan B + tan C ⟹ tan A tan B tan C ⟹ − p q = tan A tan B tan C = − q p = cot A cot B cot C = sin A sin B sin C cos A cos B cos C = b c ⋅ k a 1 0 8 − a 2 ⋅ c a ⋅ k b 1 0 8 − b 2 ⋅ a b ⋅ k c 1 0 8 − c 2 = ( a b c k ) 3 1 0 8 3 − 1 0 8 2 ( a 2 + b 2 + c 2 ) + 1 0 8 ( ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ) − ( a b c ) 2 = − 1 3 8 2 4 1 1 4 1 9 2 = − 9 6 7 9 3 A + B + C = 1 8 0 ∘ See Note
⟹ p + q = 9 6 + 7 9 3 = 8 8 9
Note:
By Newton's sums (identities) :
a 2 + b 2 + c 2 ( a b ) 2 + ( b c ) 2 + ( c a ) 2 = ( a + b + c ) 2 − 2 ( a b + b c + c a ) = 2 4 2 − 2 ( 1 8 0 ) = 2 1 6 = ( a b + b c + c a ) 2 − 2 ( a 2 b c + a b 2 c + a b c 2 ) = ( a b + b c + c a ) 2 − 2 a b c ( a + b + c ) = 1 8 0 2 − 2 ( 4 2 0 ) ( 2 4 ) = 1 2 2 4 0