I have Sine Law, I have Cosine Law, Ah~~, Problem Solved

Geometry Level 3

In A B C \triangle ABC , a = 3 2 a = 3 \sqrt 2 , c = 2 c = 2 , and 2 a = 2 b sin A \sqrt 2 a = 2 b \sin A , what is b b ?

3 3 and 37 \sqrt{37} 10 \sqrt{10} and 34 \sqrt{34} 13 \sqrt{13} and 2 3 2\sqrt 3 13 \sqrt {13} and 3 3 3\sqrt 3 3 3 and 6 6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 24, 2019

From sine rule ,

b sin B = a sin A b sin A = a sin B 2 b sin A = 2 a sin B = 2 a sin B = 1 2 \begin{aligned} \frac b{\sin B} & = \frac a{\sin A} \\ b\sin A & = a \sin B \\ 2b \sin A & = 2a \sin B = \sqrt 2 a \\ \implies \sin B & = \frac 1{\sqrt 2} \end{aligned}

For a triangle, B = 4 5 B = 45^\circ and 13 5 135^\circ . By cosine rule :

b 2 = a 2 + c 2 2 a c cos B = 18 + 4 2 ( 3 2 ) ( 2 ) ( ± 1 2 ) = 22 12 b = 10 and 34 \begin{aligned} b^2 & = a^2 + c^2 - 2ac \cos B \\ & = 18 + 4 - 2(3\sqrt 2)(2) \left(\pm \frac 1{\sqrt 2}\right) \\ & = 22 \mp 12 \\ \implies b & = \boxed{\sqrt{10} \text{ and }\sqrt{34}} \end{aligned}

David Vreken
Aug 25, 2019

The equations 2 a = 2 b sin A \sqrt{2}a = 2b \sin A and a = 3 2 a = 3 \sqrt{2} solve to b = 3 sin A b = \frac{3}{\sin A} .

The area of A B C \triangle ABC is A A B C = 1 2 b c sin A = 1 2 3 sin A 2 sin A = 3 A_{\triangle ABC} = \frac{1}{2}bc \sin A = \frac{1}{2} \cdot \frac{3}{\sin A} \cdot 2 \sin A = 3 .

By Heron's formula the area of A B C \triangle ABC is also A A B C = 1 4 ( a 2 + b 2 + c 2 ) 2 2 ( a 4 + b 4 + c 4 ) = 1 4 ( 18 + b 2 + 4 ) 2 2 ( 324 + b 4 + 16 ) = 3 A_{\triangle ABC} = \frac{1}{4}\sqrt{(a^2 + b^2 + c^2)^2 - 2(a^4 + b^4 + c^4)} = \frac{1}{4}\sqrt{(18 + b^2 + 4)^2 - 2(324 + b^4 + 16)} = 3 , which solves to b = 10 and b = 34 \boxed{b = \sqrt{10} \text{ and } b = \sqrt{34}} .

Kevin Xu
Aug 24, 2019

Since 2 a = 2 b sin A \sqrt 2 a = 2 b \sin A \\ \\

By Sine Law that a sin A = b sin B = c sin C = 2 R \frac {a} {\sin A} = \frac {b} {\sin B}= \frac {c} {\sin C} = 2R (R = double the circumradius) \\ 2 sin A = 2 sin B sin A \sqrt 2 \sin A = 2 \sin B \sin A \\ 2 2 = sin B \frac {\sqrt 2}{2} = \sin B \\ also since B \angle B is inside a triangle mieaning 0 < B < 2 π 0 < \angle B < 2\pi \\ B = π / 4 o r 3 π / 4 \angle B = \pi /4 \quad or \quad 3 \pi / 4 \\ \\

By Cosine Law b = a 2 + c 2 2 a c cos B b = \sqrt {a^2 + c^2 - 2 a c \cos B} \\ b 1 = 18 + 4 12 2 1 2 = 10 b_{1} = \sqrt {18 + 4 - 12 \sqrt2 \cdot \frac {1}{\sqrt2}} = \sqrt {10} \\ b 1 = 18 + 4 + 12 2 1 2 = 34 b_{1} = \sqrt {18 + 4 + 12 \sqrt2 \cdot \frac {1}{\sqrt2}} = \sqrt {34} \\

@Kevin Xu , you have made a mistake in this problem .

In A B C \triangle ABC , C = 9 0 \angle C=90^{\circ } , M M is the midpoint of B C BC and sin B A M = 1 3 \sin \angle BAM=\dfrac 13 . What is sin B A M \sin \angle BAM ?

Given sin B A M \sin \angle BAM and solve for sin B A M \sin \angle BAM . Please amend it.

Chew-Seong Cheong - 1 year, 9 months ago

Log in to reply

Thank you so much for pointing that out. It's been corrected.

Kevin Xu - 1 year, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...