I haven't seen it before-1

Calculus Level 5

T = 0 π / 6 ( r = 1 ( 1 ) r + 1 cos x sin r x ) d x \large\mathfrak{T}=\displaystyle\int_0^{\pi/6}\left(\sum_{r=1}^{\infty}(-1)^{r+1}\cos x\sin^rx\right)\mathrm{d}x

If T \large\mathfrak T can be expressed in the form ln ( α e 1 ψ γ ) \large\ln\left(\dfrac{\alpha e^{\frac{1}{\psi}}}{\gamma}\right) , where α , ψ , γ \alpha,\psi,\gamma are primes, then:

α × ψ × γ = ? \Large \alpha\times \psi\times \gamma=\ ?


Details and Assumptions:-

e \large e is the Euler's number defined as: e = lim n ( 1 + 1 n ) n \displaystyle e = \lim_{n\to\infty} \left( 1 + \dfrac{1}{n} \right)^n


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
May 2, 2016

r = 1 ( 1 ) r + 1 sin r x \large \displaystyle\sum_{r=1}^{\infty}(-1)^{r+1}\sin^r x represents a sum of infinite GP (since sin x < 1 |\sin x|<1 ) with first term sin x \sin x and common ratio sin x -\sin x and equals sin x 1 + sin x \dfrac{\sin x}{1+\sin x} . Thus:

T = 0 π / 6 cos x sin x d x 1 + sin x \large\mathfrak T=\displaystyle\int_0^{\pi/6}\dfrac{\cos x\sin x\mathrm{d}x}{1+\sin x} Put sin x = t \sin x=t such that cos x d x = d t \cos x\mathrm{d}x=\mathrm{d}t .

T = 0 1 / 2 t d t 1 + t \large \mathfrak T=\displaystyle\int_0^{1/2}\dfrac{t\mathrm{d}t}{1+t}

= 0 1 / 2 ( 1 1 1 + t ) d t \large =\displaystyle\int_0^{1/2}\left(1-\dfrac{1}{1+t}\right)\mathrm{d}t

= t ln ( 1 + t ) 0 1 / 2 = 1 / 2 ln ( 3 / 2 ) \large =\left|t-\ln(1+t)\right|_0^{1/2}=1/2-\ln(3/2)

= ln ( 2 e 3 ) \Large =\ln\left(\dfrac{2\sqrt e}{3}\right)

2 × 2 × 3 = 12 \Huge \therefore~2\times 2\times 3=\boxed{12}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...