I heard you liked infinite series, so here's an infinite series in an infinite series!

Calculus Level 4

1 = ( 1 a ) ( 1 a ) 2 2 + ( 1 a ) 3 3 ( 1 a ) 4 4 + . . . ( 1 b ) ( 1 b ) 2 2 + ( 1 b ) 3 3 ( 1 b ) 4 4 + . . . 1 = \dfrac{(1-a) - \dfrac{(1-a)^2}{2} + \dfrac{(1-a)^3}{3} - \dfrac{(1-a)^4}{4} + ...}{(1-b) - \dfrac{(1-b)^2}{2} + \dfrac{(1-b)^3}{3} - \dfrac{(1-b)^4}{4} + ... }

where { a = 1 ( 15 x ) 2 2 ! + ( 15 x ) 4 4 ! ( 15 x ) 6 6 ! + . . . b = 15 x ( 15 x ) 3 3 ! + ( 15 x ) 5 5 ! ( 15 x ) 7 7 ! + . . . \begin{cases} a = 1 - \dfrac{(15x)^2}{2!} + \dfrac{(15x)^4}{4!} - \dfrac{(15x)^6}{6!} + ... \\ b = 15x - \dfrac{(15x)^3}{3!} + \dfrac{(15x)^5}{5!} - \dfrac{(15x)^7}{7!} +... \end{cases} for x [ 0 , 2 π ] x \in [0, 2\pi ] .

How many real solutions for x x exist to make the top-most equation true?

2 30 0 16 32 4 15

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

A basic knowledge of the series expansion of trigonometric functions indicates that the value of a a is nothing but c o s 15 x cos15x and that of b b is nothing but sin 15 x \sin15x .

So, we can write the parent equation as:

1 = ( 1 cos 15 x ) ( 1 cos 15 x ) 2 2 + ( 1 cos 15 x ) 3 3 . . . . ( 1 sin 15 x ) ( 1 sin 15 x ) 2 2 + ( 1 sin 15 x ) 3 3 . . . . . 1 = \dfrac {(1-\cos15x) - \dfrac{{(1-\cos15x)}^{2}}{2} + \dfrac{{(1-\cos15x)}^{3}}{3} -....} {(1-\sin15x) - \dfrac{{(1-\sin15x)}^{2}}{2} + \dfrac{{(1-\sin15x)}^{3}}{3} -.....}

Also, the equation at the top can be adjusted to show the series expansion of a logarithmic function, which can be shown below:

We know that, for x < 1 x<1 , we can write ln ( 1 x ) = x + x 2 2 x 3 3 + x 4 4 . . . . \ln(1-x) = -x+\dfrac{{x}^{2}}{2} - \dfrac{{x}^{3}}{3} + \dfrac{{x}^{4}}{4} - ....

Multiplying both the sides with 1 -1 , we get:

ln ( 1 x ) = x x 2 2 + x 3 3 x 4 4 + . . . . -\ln(1-x) = x - \dfrac{{x}^{2}}{2} + \dfrac{{x}^{3}}{3} - \dfrac{{x}^{4}}{4} +....

Substituting 1 x 1-x with y y , we get

ln ( y ) = ln ( 1 y ) = ( 1 y ) ( 1 y ) 2 2 + ( 1 y ) 3 3 ( 1 y ) 4 4 + . . . . -\ln(y) = \ln(\dfrac{1}{y}) = (1-y) - \dfrac{{(1-y)}^{2}}{2} + \dfrac{{(1-y)}^{3}}{3} - \dfrac{{(1-y)}^{4}}{4} +....

Again, first substituting y y with cos 15 x \cos15x and then substituting y y with sin 15 x \sin15x , we get:

ln ( sec 15 x ) = ( 1 cos 15 x ) ( 1 cos 15 x ) 2 2 + ( 1 cos 15 x ) 3 3 ( 1 cos 15 x ) 4 4 + . . . . \ln(\sec15x) = (1-\cos15x) - \dfrac{{(1-\cos15x)}^{2}}{2} + \dfrac{{(1-\cos15x)}^{3}}{3} - \dfrac{{(1-\cos15x)}^{4}}{4} +....

ln ( csc 15 x ) = ( 1 sin 15 x ) ( 1 sin 15 x ) 2 2 + ( 1 sin 15 x ) 3 3 ( 1 sin 15 x ) 4 4 + . . . . \ln(\csc15x) = (1-\sin15x) - \dfrac{{(1-\sin15x)}^{2}}{2} + \dfrac{{(1-\sin15x)}^{3}}{3} - \dfrac{{(1-\sin15x)}^{4}}{4} +....

which are nothing but the numerator and denominator of the parent equation respectively, so we get:

1 = ln ( sec 15 x ) ln ( csc 15 x ) 1 = \dfrac {\ln(\sec15x)} {\ln(\csc15x)}

A bit of rearranging and we can see that:

ln ( tan 15 x ) ln ( csc 15 x ) = 0 \dfrac {\ln(\tan15x)} {\ln(\csc15x)} = 0 which is true when ln ( tan 15 x ) = 0 \ln(\tan15x) = 0 OR tan 15 x = 1 \tan15x = 1 .

Now, for x [ 0 , 2 π ] x\in [0,2\pi] or for x [ 0 , 30 π ] x\in [0,30\pi] , tan 15 x = 1 \tan15x = 1 for 30 values of x x . But, out of these 30 30 values, 15 15 will be rejected because these values will make csc 15 x < 0 \csc15x < 0 , which is unacceptable as we need ln ( c s c 15 x ) \ln(csc15x) to exist.

Hence, we get 15 15 solutions!

Moderator note:

Good approach recognizing the Taylor series. Remember to account for the radius of convergence, to ensure that the equation converges.

Nice solution! Slightly easier way, you can notice that you get 1 = log sin 15 x cos 15 x 1 = \log_{\sin 15x} \cos 15x right away, which gives sin 15 x = cos 15 x \sin 15x = \cos 15x , then you just ignore the solutions not in quadrant 1

Hobart Pao - 4 years, 11 months ago

Thanks @Abhineet Nayyar ! :)

Hobart Pao - 4 years, 11 months ago

Yea! I did think of that, but I found this method easier to explain! :P Nice question, btw! :)

A Former Brilliant Member - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...