1 = ( 1 − b ) − 2 ( 1 − b ) 2 + 3 ( 1 − b ) 3 − 4 ( 1 − b ) 4 + . . . ( 1 − a ) − 2 ( 1 − a ) 2 + 3 ( 1 − a ) 3 − 4 ( 1 − a ) 4 + . . .
where ⎩ ⎪ ⎨ ⎪ ⎧ a = 1 − 2 ! ( 1 5 x ) 2 + 4 ! ( 1 5 x ) 4 − 6 ! ( 1 5 x ) 6 + . . . b = 1 5 x − 3 ! ( 1 5 x ) 3 + 5 ! ( 1 5 x ) 5 − 7 ! ( 1 5 x ) 7 + . . . for x ∈ [ 0 , 2 π ] .
How many real solutions for x exist to make the top-most equation true?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Good approach recognizing the Taylor series. Remember to account for the radius of convergence, to ensure that the equation converges.
Nice solution! Slightly easier way, you can notice that you get 1 = lo g sin 1 5 x cos 1 5 x right away, which gives sin 1 5 x = cos 1 5 x , then you just ignore the solutions not in quadrant 1
Thanks @Abhineet Nayyar ! :)
Yea! I did think of that, but I found this method easier to explain! :P Nice question, btw! :)
Problem Loading...
Note Loading...
Set Loading...
A basic knowledge of the series expansion of trigonometric functions indicates that the value of a is nothing but c o s 1 5 x and that of b is nothing but sin 1 5 x .
So, we can write the parent equation as:
1 = ( 1 − sin 1 5 x ) − 2 ( 1 − sin 1 5 x ) 2 + 3 ( 1 − sin 1 5 x ) 3 − . . . . . ( 1 − cos 1 5 x ) − 2 ( 1 − cos 1 5 x ) 2 + 3 ( 1 − cos 1 5 x ) 3 − . . . .
Also, the equation at the top can be adjusted to show the series expansion of a logarithmic function, which can be shown below:
We know that, for x < 1 , we can write ln ( 1 − x ) = − x + 2 x 2 − 3 x 3 + 4 x 4 − . . . .
Multiplying both the sides with − 1 , we get:
− ln ( 1 − x ) = x − 2 x 2 + 3 x 3 − 4 x 4 + . . . .
Substituting 1 − x with y , we get
− ln ( y ) = ln ( y 1 ) = ( 1 − y ) − 2 ( 1 − y ) 2 + 3 ( 1 − y ) 3 − 4 ( 1 − y ) 4 + . . . .
Again, first substituting y with cos 1 5 x and then substituting y with sin 1 5 x , we get:
ln ( sec 1 5 x ) = ( 1 − cos 1 5 x ) − 2 ( 1 − cos 1 5 x ) 2 + 3 ( 1 − cos 1 5 x ) 3 − 4 ( 1 − cos 1 5 x ) 4 + . . . .
ln ( csc 1 5 x ) = ( 1 − sin 1 5 x ) − 2 ( 1 − sin 1 5 x ) 2 + 3 ( 1 − sin 1 5 x ) 3 − 4 ( 1 − sin 1 5 x ) 4 + . . . .
which are nothing but the numerator and denominator of the parent equation respectively, so we get:
1 = ln ( csc 1 5 x ) ln ( sec 1 5 x )
A bit of rearranging and we can see that:
ln ( csc 1 5 x ) ln ( tan 1 5 x ) = 0 which is true when ln ( tan 1 5 x ) = 0 OR tan 1 5 x = 1 .
Now, for x ∈ [ 0 , 2 π ] or for x ∈ [ 0 , 3 0 π ] , tan 1 5 x = 1 for 30 values of x . But, out of these 3 0 values, 1 5 will be rejected because these values will make csc 1 5 x < 0 , which is unacceptable as we need ln ( c s c 1 5 x ) to exist.
Hence, we get 1 5 solutions!