I love cos

Geometry Level 3

cos ( π 7 ) cos ( 2 π 7 ) cos ( 3 π 7 ) = ? \large \cos\bigg( \frac{\pi}{7} \bigg) \cos\bigg( \frac{2\pi}{7}\bigg) \cos\bigg( \frac {3\pi }{7} \bigg) = \ ?

2 3 \frac{2}{3} 1 8 \frac {1}{8} 1 7 \frac{1}{7} 2 7 \frac{2}{7}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Refaat M. Sayed
Jul 27, 2015

More simple way to solve.. assume that π 7 = θ \text{assume that } \frac{\pi}{7}= \theta 7 θ = π 7\theta = \pi so 1 2 s i n θ 2 s i n θ c o s θ c o s 2 θ c o s ( 7 θ 4 θ ) \text{so} \frac{1}{2sin\theta} 2sin\theta cos\theta cos2\theta cos (7\theta - 4\theta) 1 2 s i n θ s i n 2 θ c o s 2 θ c o s ( π 4 θ ) \frac{1}{2sin\theta} sin2\theta cos2\theta cos (\pi - 4\theta ) 1 4 s i n θ s i n 4 θ c o s 4 θ = 1 8 s i n θ s i n 8 θ \frac{-1}{4sin\theta} sin4\theta cos4\theta = \frac{-1}{8sin\theta} sin8\theta 1 8 s i n θ ( π + θ ) = 1 8 s i n θ s i n θ = 1 8 \frac{-1}{8sin\theta} (\pi +\theta)= \frac{1}{8sin\theta} sin\theta = \frac{1}{8}

beautiful :)

Motasem Mamdoh - 5 years, 10 months ago

Log in to reply

The next problem will be more beautiful ( in sha2 Allah ); )

Refaat M. Sayed - 5 years, 10 months ago
Tanishq Varshney
Jul 27, 2015

k = 1 n 1 cos ( k π n ) = sin ( n π 2 ) 2 n 1 \large{\displaystyle \prod _{ k=1 }^{ n-1 }{ \cos { \left( \frac { k\pi }{ n } \right) } =\frac { \sin { \left( \frac { n\pi }{ 2 } \right) } }{ { 2 }^{ n-1 } } } }

using cos ( x ) = cos ( π x ) \cos(x)=-\cos (\pi-x) and simplify the expression.

( cos ( π 7 ) cos ( 2 π 7 ) cos ( 3 π 7 ) ) 2 = sin ( 7 π 2 ) 2 n 1 \huge{-\left( \cos \left(\frac{\pi}{7} \right)\cos \left(\frac{2 \pi}{7} \right) \cos \left(\frac{3 \pi}{7} \right) \right)^{2}=\frac{\sin \left(\frac{7 \pi}{2} \right)}{2^{n-1}}}

( cos ( π 7 ) cos ( 2 π 7 ) cos ( 3 π 7 ) ) 2 = 1 2 6 \large{\left( \cos \left(\frac{\pi}{7} \right)\cos \left(\frac{2 \pi}{7} \right) \cos \left(\frac{3 \pi}{7} \right) \right)^{2}=\frac{1}{2^{6}}}

As angles are acute so answer is positive

Moderator note:

Very useful identity!

For clarity, can you prove the very first line?

Have five. Well done 👍

Refaat M. Sayed - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...