f ( x ) = ( 1 0 − x 2 ) ( ∫ 0 2 π sin 9 θ d θ − x 2 ) ( 4 − x 2 ) ( x 2 + 2 )
How many integral values of x are included in the domain of the above real-valued function f ( x ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Just missed by two solution. Got it where I made mistake
For the function f ( x ) presented here we require the radicand to be strictly non-negative. The definite integral in the denominator computes to 3 1 5 1 2 8 (try it yourselves), and x 2 = ∣ x ∣ in each factored term. This gives us:
f ( x ) = ( 1 0 − ∣ x ∣ ) ( 1 2 8 / 3 1 5 − ∣ x ∣ ) ( 4 − ∣ x ∣ ) ( 2 + ∣ x ∣ ) .
The radicand will be non-negative for all x in the domain ( − 1 0 , − 4 ] ∪ ( − 1 2 8 / 3 1 5 , 1 2 8 / 3 1 5 ) ∪ [ 4 , 1 0 ) . The integral values included in this domain are:
x = − 9 , − 8 , − 7 , − 6 , − 5 , − 4 , 0 , 4 , 5 , 6 , 7 , 8 , 9 ,
or 1 3 in total.
Nicely done for integrating that we can use Gamma function or Walli's formula
Problem Loading...
Note Loading...
Set Loading...
Solving the definite integral in the denominator:
∫ 0 π / 2 sin 9 θ d θ = 2 1 ⋅ 2 ∫ 0 π / 2 sin 9 θ d θ = 2 1 ⋅ B ( 5 , 2 1 ) = 2 1 ⋅ Γ ( 2 1 1 ) Γ ( 5 ) Γ ( 2 1 ) = 2 1 ⋅ 3 1 5 2 5 6 = 3 1 5 1 2 8 Using B ( m , n ) = Γ ( m + n ) Γ ( m ) Γ ( n )
Thus f ( x ) = ( 1 0 − ∣ x ∣ ) ( 3 1 5 1 2 8 − ∣ x ∣ ) ( 4 − ∣ x ∣ ) ( ∣ x ∣ + 2 ) (note that x 2 = ∣ x ∣ ).
Hence for f ( x ) to be defined over R we must have
( 1 0 − ∣ x ∣ ) ( 3 1 5 1 2 8 − ∣ x ∣ ) ( 4 − ∣ x ∣ ) ( ∣ x ∣ + 2 ) ≥ 0
or equivalently
( 4 − ∣ x ∣ ) ( ∣ x ∣ + 2 ) ( 1 0 − ∣ x ∣ ) ( 3 1 5 1 2 8 − ∣ x ∣ ) ≥ 0 ( excluding { 3 1 5 1 2 8 , 1 0 } )
Assume ∣ x ∣ = t , then we have
⟹ ( 4 − t ) ( t + 2 ) ( 1 0 − t ) ( 3 1 5 1 2 8 − t ) ≥ 0 ( t − 4 ) ( t + 2 ) ( t − 1 0 ) ( t − 3 1 5 1 2 8 ) ≤ 0 ( excluding { 3 1 5 1 2 8 , 1 0 } )
From above, we get
t ∈ [ − 2 , 3 1 5 1 2 8 ) ∪ [ 4 , 1 0 )
Since t = ∣ x ∣ ≥ 0 , so we have
t ∈ [ 0 , 3 1 5 1 2 8 ) ∪ [ 4 , 1 0 ) ⟹ ∣ x ∣ ∈ [ 0 , 3 1 5 1 2 8 ) ∪ [ 4 , 1 0 )
Hence
x ∈ ( − 1 0 , − 4 ] ∪ ( − 3 1 5 1 2 8 , 3 1 5 1 2 8 ) ∪ [ 4 , 1 0 )
Thus, we have
{ x : x ∈ Z ∧ x ∈ ( − 1 0 , − 4 ] ∪ ( − 3 1 5 1 2 8 , 3 1 5 1 2 8 ) ∪ [ 4 , 1 0 ) } ⟹ x ∈ { − 9 , − 8 , − 7 , − 6 , − 5 , − 4 , 0 , 4 , 5 , 6 , 7 , 8 , 9 }
Giving us a total of 1 3 solutions for integer values of x .