I hope I created a quite clear Problem

Algebra Level 5

f ( x ) = ( 4 x 2 ) ( x 2 + 2 ) ( 10 x 2 ) ( 0 π 2 sin 9 θ d θ x 2 ) f(x)=\sqrt{\dfrac{\left(4-\sqrt{x^2} \right) \left(\sqrt{x^2}+2 \right)}{ \left(10-\sqrt{x^2} \right) \left(\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^9 \theta \ d\theta -\sqrt{x^2} \right)}}

How many integral values of x x are included in the domain of the above real-valued function f ( x ) f(x) ?


Join the Brilliant Classes and enjoy the excellence. Also checkout Target Assignment #1 for JEE.
6 12 None of the given choices. 13 Infinite 7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tapas Mazumdar
Apr 5, 2017

Solving the definite integral in the denominator:

0 π / 2 sin 9 θ d θ = 1 2 2 0 π / 2 sin 9 θ d θ = 1 2 B ( 5 , 1 2 ) = 1 2 Γ ( 5 ) Γ ( 1 2 ) Γ ( 11 2 ) Using B ( m , n ) = Γ ( m ) Γ ( n ) Γ ( m + n ) = 1 2 256 315 = 128 315 \begin{aligned} \displaystyle \int_0^{{\pi}/2} \sin^9 \theta \,d \theta &= \dfrac 12 \cdot 2 \int_0^{{\pi}/2} \sin^9 \theta \,d \theta \\ &= \dfrac 12 \cdot B \left( 5, \dfrac 12 \right) \\ &= \dfrac 12 \cdot \dfrac{ \Gamma (5) \Gamma \left( \frac 12 \right) }{\Gamma \left( \frac{11}{2} \right)} & \small{\color{#3D99F6} \text{Using } B(m,n) = \dfrac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}} \\ &= \dfrac 12 \cdot \dfrac{256}{315} \\ &= \dfrac{128}{315} \end{aligned}

Thus f ( x ) = ( 4 x ) ( x + 2 ) ( 10 x ) ( 128 315 x ) f(x) = \sqrt{\dfrac{ (4-|x|) (|x|+2) }{ (10-|x|) \left( \frac{128}{315} - |x| \right) }} (note that x 2 = x \sqrt{x^2} = |x| ).

Hence for f ( x ) f(x) to be defined over R \mathbb{R} we must have

( 4 x ) ( x + 2 ) ( 10 x ) ( 128 315 x ) 0 \dfrac{ (4-|x|) (|x|+2) }{ (10-|x|) \left( \frac{128}{315} - |x| \right) } \ge 0

or equivalently

( 4 x ) ( x + 2 ) ( 10 x ) ( 128 315 x ) 0 ( excluding { 128 315 , 10 } ) (4-|x|) (|x|+2) (10-|x|) \left( \frac{128}{315} - |x| \right) \ge 0 \qquad \qquad \small \color{#3D99F6} \left( \text{excluding } \left\{ \dfrac{128}{315} , 10 \right\} \right)

Assume x = t |x| = t , then we have

( 4 t ) ( t + 2 ) ( 10 t ) ( 128 315 t ) 0 ( t 4 ) ( t + 2 ) ( t 10 ) ( t 128 315 ) 0 ( excluding { 128 315 , 10 } ) \begin{aligned} & (4-t) (t+2) (10-t) \left( \frac{128}{315} - t \right) \ge 0 \\ \implies & (t-4) (t+2) (t-10) \left( t - \frac{128}{315} \right) \le 0 & \small \color{#3D99F6} \left( \text{excluding } \left\{ \dfrac{128}{315} , 10 \right\} \right) \end{aligned}

From above, we get

t [ 2 , 128 315 ) [ 4 , 10 ) t \in \left[ -2 , \dfrac{128}{315} \right) \cup [4,10)

Since t = x 0 t = |x| \ge 0 , so we have

t [ 0 , 128 315 ) [ 4 , 10 ) x [ 0 , 128 315 ) [ 4 , 10 ) t \in \left[ 0 , \dfrac{128}{315} \right) \cup [4,10) \implies |x| \in \left[ 0 , \dfrac{128}{315} \right) \cup [4,10)

Hence

x ( 10 , 4 ] ( 128 315 , 128 315 ) [ 4 , 10 ) x \in (-10,-4] \cup \left( -\dfrac{128}{315} , \dfrac{128}{315} \right) \cup [4,10)

Thus, we have

{ x : x Z x ( 10 , 4 ] ( 128 315 , 128 315 ) [ 4 , 10 ) } x { 9 , 8 , 7 , 6 , 5 , 4 , 0 , 4 , 5 , 6 , 7 , 8 , 9 } \left\{ x : x \in \mathbb{Z} \land x \in (-10,-4] \cup \left( -\dfrac{128}{315} , \dfrac{128}{315} \right) \cup [4,10) \right\} \implies x \in \{-9,-8,-7,-6,-5,-4,0,4,5,6,7,8,9\}

Giving us a total of 13 \boxed{13} solutions for integer values of x x .

Just missed by two solution. Got it where I made mistake

A Former Brilliant Member - 3 years, 4 months ago

Log in to reply

Glad to see you on Brilliant! :D

Tapas Mazumdar - 3 years, 4 months ago
Tom Engelsman
Oct 18, 2015

For the function f ( x ) f(x) presented here we require the radicand to be strictly non-negative. The definite integral in the denominator computes to 128 315 \frac{128}{315} (try it yourselves), and x 2 = x \sqrt{x^2} = |x| in each factored term. This gives us:

f ( x ) = ( 4 x ) ( 2 + x ) ( 10 x ) ( 128 / 315 x ) . f(x) = \sqrt{ \frac{(4 - |x|)(2 + |x|)}{(10 - |x|)(128/315 - |x|)}}.

The radicand will be non-negative for all x x in the domain ( 10 , 4 ] ( 128 / 315 , 128 / 315 ) [ 4 , 10 ) (-10, -4] \cup (-128/315, 128/315) \cup [4, 10) . The integral values included in this domain are:

x = 9 , 8 , 7 , 6 , 5 , 4 , 0 , 4 , 5 , 6 , 7 , 8 , 9 x = {-9, -8, -7, -6, -5, -4, 0 , 4, 5, 6, 7, 8, 9} ,

or 13 \boxed{13} in total.

Nicely done for integrating that we can use Gamma function or Walli's formula

Prakhar Bindal - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...