I hope there will be no convergence issues (eighteenth integral)

Calculus Level 5

0 1 ( x + x x + x x + x x + . . . ) d x \displaystyle {\huge \int_{0}^{1} } \left( x + \dfrac{x}{x+ \dfrac{x}{x+\dfrac{x}{x+...}}} \right) \, dx

If the above integral can be represented in the form

a b + c d f g ln ( h + j k ) \dfrac{a}{b} + \dfrac{c \sqrt{d}}{f} - g \ln \left( \dfrac{h + \sqrt{j}}{k}\right)

where

  • gcd ( a , b ) = gcd ( c , f ) = gcd ( h , k ) = 1 \gcd(a, b) = \gcd(c, f) = \gcd(h, k) = 1
  • a , b , c , d , f , g , h , j , k a, b, c, d, f, g, h, j, k are all positive integers
  • d , j d, j are square-free
  • g = 2 g = 2

then find a + b + c + d + f + g + h + j + k a+b+c+d+f+g+h+j+k .

Bonus: What special number is contained somewhere in the answer to this problem?


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let I = 0 1 ( x + x x + x x + x x + . . . ) d x \displaystyle {\huge \int_{0}^{1} } \left( x + \dfrac{x}{x+ \dfrac{x}{x+\dfrac{x}{x+...}}} \right) \, dx

Let the expression given under integral be A. So,

x + x A = A \large x + \frac{x}{A} = A

Solving for A we get ,

A = x + ( x + 2 ) 2 2 2 2 \large \displaystyle A = \frac{x + \sqrt{(x+2)^{2} - 2^{2}}}{2}

I = 1 2 0 1 x + ( x + 2 ) 2 2 2 d x \large I = \displaystyle \frac{1}{2} \int_{0}^{1} x + \sqrt{(x+2)^{2} - 2^{2}} dx

For the part ( x + 2 ) 2 2 2 \sqrt{(x+2)^{2} - 2^{2}} we get the following after integration ,

I = 1 2 [ x 2 2 ] 0 1 + [ 1 2 ( x + 2 ) ( x + 2 ) 2 2 2 1 2 2 2 l o g ( x + 2 ) + ( x + 2 ) 2 2 2 ] 0 1 \large \displaystyle I = \frac{1}{2} [\frac{x^{2}}{2}]_{0}^{1} + [\frac{1}{2}(x+2)\sqrt{(x+2)^{2} - 2^{2}} - \frac{1}{2}2^{2}log| (x + 2) + \sqrt{(x+2)^{2} - 2^{2}}|]_{0}^{1} [Proof for this formulae is skipped as it is a general one]

I = 1 2 [ 1 2 + 3 ( 5 ) 2 2 [ l o g 3 + ( 5 ) l o g 2 ] \large \displaystyle I = \frac{1}{2} [\frac{1}{2} + \frac{3\sqrt(5)}{2} - 2[log|3 + \sqrt(5)| - log2]

I = 1 2 [ 1 2 + 3 ( 5 ) 2 2 l o g 3 + ( 5 ) 2 ] \large \displaystyle I = \frac{1}{2} [\frac{1}{2} + \frac{3\sqrt(5)}{2} - 2log|\frac{3+\sqrt(5)}{2}|]

I = 1 4 + 3 ( 5 ) 4 2 l o g 3 + ( 5 ) 2 \large \displaystyle I = \frac{1}{4} + \frac{3\sqrt(5)}{4} - 2log|\sqrt{\frac{3+\sqrt(5)}{2}}|

I = 1 4 + 3 ( 5 ) 4 2 l o g 5 + 1 + 2 ( 5 ) 4 \large \displaystyle I = \frac{1}{4} + \frac{3\sqrt(5)}{4} - 2log|\sqrt{\frac{5+1+2\sqrt(5)}{4}}|

I = 1 4 + 3 ( 5 ) 4 2 l o g ( ( 5 ) + 1 2 ) 2 \large \displaystyle I = \frac{1}{4} + \frac{3\sqrt(5)}{4} - 2log|\sqrt{(\frac{\sqrt(5) + 1}{2})^{2}}|

I = 1 4 + 3 ( 5 ) 4 2 l o g 1 + ( 5 ) 2 \large \displaystyle I = \frac{1}{4} + \frac{3\sqrt(5)}{4} - 2log|\frac{1+\sqrt(5)}{2}|

Therefore , a + b + c + d + f + g + h + j + k = 27

Bonus : It is the Golden ration inside the logarithm.

Moderator note:

There are indeed convergence issues. You have to explain why

  1. The expression converges to a finite value.
  2. The expression evaluates to the positive root.

For the bonus question, the golden ratio!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...