I like integrals 2

Calculus Level 5

0 1 ln ( 1 x ) e x d x = A B e n = 1 1 n n ! \large \int_0^1 \dfrac{\ln(1-x) }{e^x} \, dx = - \dfrac A{B e} \sum_{n=1}^\infty \dfrac1{n \cdot n!}

If the equation above holds true for positive integers A A and B B , where A A and B B are coprime positive integers, find A + B A+B .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

using substitution, 0 1 log ( 1 x ) e x d x = e 1 0 1 log ( x ) e x d x \int_0^1 \log(1-x) e^{-x} dx = e^{-1} \int_0^1 \log(x) e^x dx using integration by parts, 0 1 log ( x ) e x d x = lim y 0 [ y 1 log ( x ) e x d x ] = lim y 0 [ log ( y ) e y y 1 e x / x d x ] = lim y 0 [ log ( y ) ( e y 1 ) y 1 ( e x 1 ) / x d x ] = lim y 0 [ log ( y ) ( e y 1 ) ] 0 1 ( e x 1 ) / x d x = 0 1 ( e x 1 ) / x d x \int_0^1 \log(x) e^x dx = \lim_{y \rightarrow 0} [\int_y^1 \log(x) e^x dx] = \lim_{y \rightarrow 0} [-\log(y) e^y - \int_y^1 e^x / x dx] = \lim_{y \rightarrow 0} [-\log(y) (e^y-1) - \int_y^1 (e^x-1) / x dx] = \lim_{y \rightarrow 0} [-\log(y) (e^y-1)] - \int_0^1 (e^x-1) / x dx = - \int_0^1 (e^x-1) / x dx and note that 0 1 ( e x 1 ) / x = n = 1 1 n n ! \int_0^1 (e^x-1) / x = \sum_{n=1}^{\infty} \frac{1}{n\cdot n!} so A = B = 1 A=B=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...