I like integrals 3

Calculus Level 4

π / 2 π / 2 a b 2 cos x ( a 2 sin 2 x + b 2 cos 2 x ) 3 / 2 d x \large \int_{-\pi/2}^{\pi /2} \dfrac{ab^2 \cos x}{ (a^2 \sin^2 x + b^2 \cos^2 x)^{3/2} } \, dx

Evaluate the integral above for positive constants a a and b b .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jun 8, 2016

Write it as:- G = π / 2 π / 2 a b sec 2 x d x ( a 2 b 2 tan 2 x + 1 ) 3 / 2 \large\mathfrak G= \displaystyle\int_{-\pi/2}^{\pi /2} \dfrac{\frac ab \sec^2 x~\mathrm{d}x}{ \left(\frac{a^2}{b^2}\tan^2 x+1\right)^{3/2}} Substitute a b tan x = tan y \frac ab\tan x=\tan y such that a b sec 2 x d x = sec 2 y d y \frac ab \sec^2 x~\mathrm{d}x=\sec^2 y~\mathrm{d}y .

G = π / 2 π / 2 sec 2 y d y ( tan 2 y + 1 ) 3 / 2 sec 3 y \large\therefore\mathfrak G=\displaystyle\int_{-\pi/2}^{\pi /2} \dfrac{ \sec^2 y~\mathrm{d}y}{ \underbrace{\left(\tan^2 y+1\right)^{3/2}}_{\sec^3 y}} = π / 2 π / 2 cos y d y \large =\displaystyle\int_{-\pi/2}^{\pi /2}\cos y~\mathrm{d}y = 2 0 π / 2 cos y d y = 2 \large =2\displaystyle\int_0^{\pi/2}\cos y~\mathrm{d}y=\Large\boxed{\color{#007fff}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...