I like integrals 4

Calculus Level 4

0 1 sinh x e x d x = 1 A e B + 1 C \displaystyle\int _{ 0 }^{ 1 }{ \dfrac { \sinh { x } }{ { e }^{ x } } dx } =\frac { 1 }{ A{ e }^{ B } } +\frac { 1 }{ C }

The equation above holds true for integer constants A , B A,B and C C . Find A + B + C A+B+C .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First Last
Apr 16, 2016

0 1 sinh x e x = 0 1 1 2 1 2 e 2 x = 1 4 e 2 + 1 4 \displaystyle\int_{0}^{1}\frac{\sinh{x}}{e^x} = \int_{0}^{1} \frac{1}{2}-\frac{1}{2e^2x} = \frac{1}{4e^2}+\frac{1}{4}

N o t e : \bf Note:

sinh x = e x e x 2 \displaystyle\sinh{x}=\frac{e^x-e^{-x}}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...