∫ 0 4 π sin x + cos x cos x d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The fact that the derivative of sin ( x ) + cos ( x ) is cos ( x ) − sin ( x ) is the motivation behind this method. So note that
sin ( x ) + cos ( x ) cos ( x ) = 2 1 ( sin ( x ) + cos ( x ) 2 cos ( x ) ) = 2 1 ( sin ( x ) + cos ( x ) cos ( x ) + cos ( x ) + sin ( x ) − sin ( x ) ) =
2 1 ( sin ( x ) + cos ( x ) sin ( x ) + cos ( x ) + sin ( x ) + cos ( x ) cos ( x ) − sin ( x ) ) = 2 1 ( 1 + sin ( x ) + cos ( x ) cos ( x ) − sin ( x ) ) .
Then using the substitution method with u = sin ( x ) + cos ( x ) ⟹ d u = ( cos ( x ) − sin ( x ) ) d x , we see that
∫ 0 π / 4 sin ( x ) + cos ( x ) cos ( x ) d x = 2 1 ( x + ln ( sin ( x ) + cos ( x ) ) ) 0 π / 4 = 2 1 ( 4 π + ln ( 2 1 + 2 1 ) ) − 2 1 ( 0 + ln ( 0 ) ) = 8 π + 4 ln ( 2 ) = 0 . 5 6 6 to 3 decimal places.
∫ 0 4 π sin ( x ) + cos ( x ) cos ( x ) d x = = = = = = = ∫ 0 4 π ( sin ( x ) + cos ( x ) ) 2 cos ( x ) ( sin ( x ) + cos ( x ) ) d x ∫ 0 4 π 1 + 2 cos ( x ) sin ( x ) cos ( x ) sin ( x ) + cos 2 ( x ) d x 2 1 ∫ 0 4 π 1 + sin ( 2 x ) sin ( 2 x ) + cos ( 2 x ) + 1 d x 2 1 ∫ 0 4 π 1 + 1 + sin ( 2 x ) cos ( 2 x ) d x 8 π + 2 1 ∫ 0 4 π 1 + sin ( 2 x ) cos ( 2 x ) d x 8 π + 4 1 ∫ 0 1 1 + u 1 d u via u = sin ( 2 x ) 8 π + 4 1 ln ( 2 ) ≈ 0 . 5 6 5 9 8 5
Write I 1 = ∫ 0 4 π sin ( x ) + cos ( x ) cos ( x ) d x and I 2 = ∫ 0 4 π sin ( x ) + cos ( x ) sin ( x ) d x . Note that I 1 + I 2 = 4 π . Furthermore, we can observe that I 1 − I 2 = ∫ 0 4 π sin ( x ) + cos ( x ) cos ( x ) − sin ( x ) d x . Substituting u = sin ( x ) + cos ( x ) implies d u = ( cos ( x ) − sin ( x ) ) d x from which follows that I 1 − I 2 = ∫ 1 2 u d u = 2 ln ( 2 ) . By using the two equations I 1 + I 2 = 4 π and I 1 − I 2 = 2 ln ( 2 ) we obtain that I 1 = 8 π + 4 ln ( 2 ) ≈ 0 . 5 6 6 .
We can use the identity cos ( x − ϕ ) = cos ( x ) cos ( ϕ ) + sin ( x ) sin ( ϕ ) and choose ϕ = 4 π to rewrite the denominator as sin x + cos x = 2 cos ( x − 4 π ) .
Then use the substitution u = x − 4 π to find the equivalent integral ∫ − π / 4 0 2 cos u cos ( u + 4 π ) d u = ∫ − π / 4 0 2 cos u 2 2 cos u − 2 2 sin u d u = 2 1 ∫ − π / 4 0 ( 1 − tan u ) d u = 2 1 [ u + ln ∣ cos u ∣ ] − π / 4 0 = 2 1 ( ( 0 + ln ( 1 ) ) − ( − 4 π + ln ( 2 1 ) ) ) = 8 π + 4 1 ln ( 2 ) ≈ 0 . 5 6 5 9 8 5 8 7 7
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 4 π sin x + cos x cos x d x = ∫ 0 4 π sin ( 4 π − x ) + cos ( 4 π − x ) cos ( 4 π − x ) d x = ∫ 0 4 π 2 1 cos x − 2 1 sin x + 2 1 cos x + 2 1 sin x 2 1 cos x + 2 1 sin x d x = ∫ 0 4 π 2 cos x cos x + sin x d x = 2 1 ∫ 0 4 π ( 1 + tan x ) d x = 2 x − ln ( cos x ) ∣ ∣ ∣ ∣ 0 4 π = 8 π + 4 ln 2 ≈ 0 . 5 6 6 Using ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x