I like this integral

Calculus Level 4

0 π 4 cos x sin x + cos x d x = ? \large \int_{0}^{\frac \pi 4} \frac {\cos{x}} {\sin{x}+\cos{x}} dx = ?


The answer is 0.565985.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Jul 15, 2018

I = 0 π 4 cos x sin x + cos x d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 0 π 4 cos ( π 4 x ) sin ( π 4 x ) + cos ( π 4 x ) d x = 0 π 4 1 2 cos x + 1 2 sin x 1 2 cos x 1 2 sin x + 1 2 cos x + 1 2 sin x d x = 0 π 4 cos x + sin x 2 cos x d x = 1 2 0 π 4 ( 1 + tan x ) d x = x ln ( cos x ) 2 0 π 4 = π 8 + ln 2 4 0.566 \begin{aligned} I & = \int_0^\frac \pi 4 \frac {\cos x}{\sin x+\cos x}dx & \small \color{#3D99F6} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \int_0^\frac \pi 4 \frac {\cos \left(\frac \pi 4-x\right)}{\sin \left(\frac \pi 4-x\right)+\cos \left(\frac \pi 4-x\right)} dx \\ & = \int_0^\frac \pi 4 \frac {\frac 1{\sqrt 2} \cos x + \frac 1{\sqrt 2}\sin x}{\frac 1{\sqrt 2} \cos x - \frac 1{\sqrt 2}\sin x + \frac 1{\sqrt 2} \cos x + \frac 1{\sqrt 2}\sin x} dx \\ & = \int_0^\frac \pi 4 \frac {\cos x + \sin x}{2\cos x} dx \\ & = \frac 12 \int_0^\frac \pi 4 \left(1+\tan x \right) dx \\ & = \frac {x - \ln (\cos x)}2 \bigg|_0^\frac \pi 4 \\ & = \frac \pi 8 + \frac {\ln 2}4 \\ & \approx \boxed{0.566} \end{aligned}

The fact that the derivative of sin ( x ) + cos ( x ) \sin(x) + \cos(x) is cos ( x ) sin ( x ) \cos(x) - \sin(x) is the motivation behind this method. So note that

cos ( x ) sin ( x ) + cos ( x ) = 1 2 ( 2 cos ( x ) sin ( x ) + cos ( x ) ) = 1 2 ( cos ( x ) + cos ( x ) + sin ( x ) sin ( x ) sin ( x ) + cos ( x ) ) = \dfrac{\cos(x)}{\sin(x) + \cos(x)} = \dfrac{1}{2}\left(\dfrac{2\cos(x)}{\sin(x) + \cos(x)}\right) = \dfrac{1}{2}\left(\dfrac{\cos(x) + \cos(x) + \sin(x) - \sin(x)}{\sin(x) + \cos(x)}\right) =

1 2 ( sin ( x ) + cos ( x ) sin ( x ) + cos ( x ) + cos ( x ) sin ( x ) sin ( x ) + cos ( x ) ) = 1 2 ( 1 + cos ( x ) sin ( x ) sin ( x ) + cos ( x ) ) \dfrac{1}{2}\left(\dfrac{\sin(x) + \cos(x)}{\sin(x) + \cos(x)} + \dfrac{\cos(x) - \sin(x)}{\sin(x) + \cos(x)}\right) = \dfrac{1}{2}\left(1 + \dfrac{\cos(x) - \sin(x)}{\sin(x) + \cos(x)}\right) .

Then using the substitution method with u = sin ( x ) + cos ( x ) d u = ( cos ( x ) sin ( x ) ) d x u = \sin(x) + \cos(x) \Longrightarrow du = (\cos(x) - \sin(x)) dx , we see that

0 π / 4 cos ( x ) sin ( x ) + cos ( x ) d x = 1 2 ( x + ln ( sin ( x ) + cos ( x ) ) ) 0 π / 4 = 1 2 ( π 4 + ln ( 1 2 + 1 2 ) ) 1 2 ( 0 + ln ( 0 ) ) = π 8 + ln ( 2 ) 4 = 0.566 \displaystyle \int_{0}^{\pi/4} \dfrac{\cos(x)}{\sin(x) + \cos(x)} dx = \dfrac{1}{2}\left(x + \ln(\sin(x) + \cos(x))\right)_{0}^{\pi/4} = \dfrac{1}{2}\left(\dfrac{\pi}{4} + \ln\left(\dfrac{1}{\sqrt{2}} + \dfrac{1}{\sqrt{2}}\right)\right) - \dfrac{1}{2}(0 + \ln(0)) = \dfrac{\pi}{8} + \dfrac{\ln(2)}{4} = \boxed{0.566} to 3 decimal places.

Vincent Moroney
Jul 14, 2018

0 π 4 cos ( x ) sin ( x ) + cos ( x ) d x = 0 π 4 cos ( x ) ( sin ( x ) + cos ( x ) ) ( sin ( x ) + cos ( x ) ) 2 d x = 0 π 4 cos ( x ) sin ( x ) + cos 2 ( x ) 1 + 2 cos ( x ) sin ( x ) d x = 1 2 0 π 4 sin ( 2 x ) + cos ( 2 x ) + 1 1 + sin ( 2 x ) d x = 1 2 0 π 4 1 + cos ( 2 x ) 1 + sin ( 2 x ) d x = π 8 + 1 2 0 π 4 cos ( 2 x ) 1 + sin ( 2 x ) d x = π 8 + 1 4 0 1 1 1 + u d u via u = sin ( 2 x ) = π 8 + 1 4 ln ( 2 ) 0.565985 \begin{aligned} \int_0^{\frac{\pi}{4}} \frac{\cos(x)}{\sin(x)+\cos(x)}\,dx= & \int_0^{\frac{\pi}{4}} \frac{\cos (x) (\sin(x) + \cos(x))}{(\sin(x)+\cos(x))^2}\,dx\\ =& \int_0^{\frac{\pi}{4}} \frac{\cos(x)\sin(x)+\cos^2(x)}{1+2\cos(x)\sin(x)}\,dx\\ = &\frac{1}{2} \int_0^{\frac{\pi}{4}}\frac{\sin(2x)+\cos(2x)+1}{1+\sin(2x)}\,dx \\ = & \frac{1}{2}\int_0^{\frac{\pi}{4}}1 + \frac{\cos(2x)}{1+\sin(2x)}\,dx \\ = & \frac{\pi}{8} +\frac{1}{2}\int_0^{\frac{\pi}{4}} \frac{\cos(2x)}{1+\sin(2x)}\,dx \\ = & \frac{\pi}{8} + \frac{1}{4}\int_0^1 \frac{1}{1+u}\, du \, \, \text{ via } \color{#3D99F6} u = \sin(2x)\\ = & \frac{\pi}{8} + \frac{1}{4} \ln(2) \approx \boxed{0.565985} \end{aligned}

Joël Ganesh
Aug 14, 2019

Write I 1 = 0 π 4 cos ( x ) sin ( x ) + cos ( x ) d x and I 2 = 0 π 4 sin ( x ) sin ( x ) + cos ( x ) d x . I_1 = \int_0^{\frac{\pi}{4}} \frac{\cos(x)}{\sin(x)+\cos(x)}\mathrm{d}x \text{ and } I_2 = \int_0^{\frac{\pi}{4}} \frac{\sin(x)}{\sin(x)+\cos(x)}\mathrm{d}x. Note that I 1 + I 2 = π 4 I_1 + I_2 = \frac{\pi}{4} . Furthermore, we can observe that I 1 I 2 = 0 π 4 cos ( x ) sin ( x ) sin ( x ) + cos ( x ) d x . I_1 - I_2 = \int_0^{\frac{\pi}{4}} \frac{\cos(x)-\sin(x)}{\sin(x)+\cos(x)}\mathrm{d}x. Substituting u = sin ( x ) + cos ( x ) u = \sin(x) + \cos(x) implies d u = ( cos ( x ) sin ( x ) ) d x \mathrm{d}u = \left(\cos(x)-\sin(x)\right)\mathrm{d}x from which follows that I 1 I 2 = 1 2 d u u = ln ( 2 ) 2 . I_1 - I_2 = \int_1^{\sqrt{2}} \frac{\mathrm{d}u}{u} = \frac{\ln(2)}{2}. By using the two equations I 1 + I 2 = π 4 I_1 + I_2 = \frac{\pi}{4} and I 1 I 2 = ln ( 2 ) 2 I_1 - I_2 = \frac{\ln(2)}{2} we obtain that I 1 = π 8 + ln ( 2 ) 4 0.566 . I_1 = \frac{\pi}{8} + \frac{\ln(2)}{4} \approx \boxed{0.566}.

Brian Moehring
Jul 14, 2018

We can use the identity cos ( x ϕ ) = cos ( x ) cos ( ϕ ) + sin ( x ) sin ( ϕ ) \cos(x-\phi) = \cos(x)\cos(\phi) + \sin(x)\sin(\phi) and choose ϕ = π 4 \phi = \frac{\pi}{4} to rewrite the denominator as sin x + cos x = 2 cos ( x π 4 ) . \sin x + \cos x = \sqrt{2} \cos\left(x - \frac{\pi}{4}\right).

Then use the substitution u = x π 4 u = x-\frac{\pi}{4} to find the equivalent integral π / 4 0 cos ( u + π 4 ) 2 cos u d u = π / 4 0 2 2 cos u 2 2 sin u 2 cos u d u = 1 2 π / 4 0 ( 1 tan u ) d u = 1 2 [ u + ln cos u ] π / 4 0 = 1 2 ( ( 0 + ln ( 1 ) ) ( π 4 + ln ( 1 2 ) ) ) = π 8 + 1 4 ln ( 2 ) 0.565985877 \begin{aligned} \int_{-\pi/4}^0 \frac{\cos\left(u+\frac{\pi}{4}\right)}{\sqrt{2}\cos u} \,du &= \int_{-\pi/4}^0 \frac{\frac{\sqrt{2}}{2}\cos u - \frac{\sqrt{2}}{2}\sin u}{\sqrt{2}\cos u}\, du \\ &= \frac{1}{2} \int_{-\pi/4}^0 \left(1 - \tan u\right)\,du \\ &= \frac{1}{2} \Big[u + \ln|\cos u|\Big]_{-\pi/4}^0 \\ &= \frac{1}{2} \left( (0 + \ln(1)) - \left(-\frac{\pi}{4} + \ln\left(\frac{1}{\sqrt{2}} \right) \right) \right) \\ &= \frac{\pi}{8} + \frac{1}{4}\ln(2) \approx \boxed{0.565985877} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...