⎩ ⎨ ⎧ y + 6 = ( x − 3 ) 2 x + 6 = ( y − 3 ) 2
If x and y are distinct numbers that satisfy the system of equations above, find x 2 + y 2 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Very tedious, just find out x+y like you did then add both equations you will find that only x^2+y^2=29
y+6=(x-3)
2
(eqn1)
x+6=(y-3)
2
(eqn2)
eqn1+eqn2=x+y+12=x
2
-6x+9+y
2
-6y+9
x
2
+y
2
=7x+7y-6
x
2
+y
2
=7(x+y)-6
eqn1-eqn2=y-x=x
2
-y
2
-6x+6y
5x-5y=x
2
-y
2
5(x-y)=(x+y)(x-y)
5=x+y
x
2
+y
2
=7(x+y)-6
x
2
+y
2
=7(5)-6
x
2
+y
2
=29
Problem Loading...
Note Loading...
Set Loading...
Let
y + 6 = x + 6 = ( x − 3 ) 2 ⇒ ( 1 ) ( y − 3 ) 2 ⇒ ( 2 )
Equation ( 1 ) − Equation ( 2 ) ;
( y + 6 ) − ( x + 6 ) = y + 6 − x − 6 = y − x = − ( x − y ) = − 1 = x + y = x 2 + 2 x y + y 2 = x 2 + y 2 = ( x − 3 ) 2 − ( y − 3 ) 2 [ ( x − 3 ) − ( y − 3 ) ] [ ( x − 3 ) + ( y − 3 ) ] ( x − 3 − y + 3 ) ( x − 3 + y − 3 ) ( x − y ) ( x + y − 6 ) x + y − 6 5 2 5 2 5 − 2 x y ⇒ ( 3 )
Equation ( 1 ) + Equation ( 2 ) ;
( y + 6 ) + ( x + 6 ) = y + 6 + x + 6 = x + y + 1 2 = 5 + 1 2 = 1 7 = 1 6 = − 8 = x y = ( x − 3 ) 2 + ( y − 3 ) 2 [ ( x − 3 ) + ( y − 3 ) ] 2 − 2 ( x − 3 ) ( y − 3 ) ( x + y − 6 ) 2 − 2 ( x y − 3 x − 3 y + 9 ) ( − 1 ) 2 − 2 [ x y − 3 ( x + y ) + 9 ] 1 − 2 [ x y − 3 ( 5 ) + 9 ] − 2 ( x y − 1 5 + 9 ) x y − 6 − 2
Instead x y with − 2 in Equation ( 3 ) ;
x 2 + y 2 = 2 5 − 2 ( − 2 ) = 2 5 + 4 = 2 9