I love being inspired! 7

Geometry Level 2

{ sin θ x = cos θ y cos 4 θ x 4 + sin 4 θ y 4 = 97 sin 2 θ x 3 y + y 3 x \begin{cases} \dfrac{\sin\theta}{x} =\dfrac{\cos\theta}{y} \\ \dfrac{\cos^{4}\theta}{x^{4}}+\dfrac{\sin^{4}\theta}{y^{4}}=\dfrac{97\sin 2\theta}{x^{3}y+y^{3}x} \end{cases}

Let x x and y y be positive real numbers and θ \theta is an angle such that it is not a multiple of π 2 \frac{\pi}{2} . If x , y x,y and θ \theta satisfy the system of equations above, find x y + y x \dfrac{x}{y}+\dfrac{y}{x} .


Source: 2009 Harvard-MIT Mathematics Tournament


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Jan 4, 2016

This would definitely reduce some calculations. Substituting y=mx in the second equation, where m=cot θ \theta and cross multiplication gives(along with cancellation of x 4 x^4 in denominators): sin 8 θ + cos 8 θ = 194 sin 4 θ cos 4 θ \sin^8\theta+\cos^8\theta=194\sin^4\theta \cos^4\theta ( sin 4 θ + c o s 4 θ ) 2 = 196 sin 4 θ cos 4 θ \Rightarrow (\sin^4\theta+cos^4\theta)^2=196\sin^4\theta \cos^4\theta sin 4 θ + cos 4 θ = 14 sin 2 θ cos 2 θ \Rightarrow \sin^4\theta+\cos^4\theta=14\sin^2\theta \cos^2\theta sin 2 θ + cos 2 θ = 4 sin θ cos θ \Rightarrow \sin^2\theta+\cos^2\theta=4\sin\theta \cos\theta tan θ + cot θ = 4 \Rightarrow \tan\theta+\cot\theta=4 Hence x y + y x = tan θ + cot θ = 4 \frac{x}{y}+\frac{y}{x}=\tan\theta+\cot\theta \space =\color{#20A900}{4}\\ Beauty of algebra and trigonometry!! \color{#3D99F6}{\text {Beauty of algebra and trigonometry!!}}

Akshay Yadav
Jan 4, 2016

This is a very very beatiful problem.

So let us see what we have got,

sin θ x = cos θ y \frac{\sin\theta}{x}=\frac{\cos\theta}{y}

And,

cos 4 θ x 4 + sin 4 θ y 4 = 97 sin 2 θ x 3 y + y 3 x \frac{\cos^{4}\theta}{x^{4}}+\frac{\sin^{4}\theta}{y^{4}}=\frac{97\sin 2\theta}{x^{3}y+y^{3}x}

Let us just simplify the second equation,

cos 4 θ x 4 + sin 4 θ y 4 = 97 sin 2 θ x 3 y + y 3 x \frac{\cos^{4}\theta}{x^{4}}+\frac{\sin^{4}\theta}{y^{4}}=\frac{97\sin 2\theta}{x^{3}y+y^{3}x}

x 4 y 4 ( cos 4 θ x 8 y 4 + sin 4 θ y 8 x 4 ) = 97 ( 2 ) ( sin θ ) ( cos θ ) x y ( x 2 + y 2 ) x^{4}y^{4}(\frac{\cos^{4}\theta}{x^{8}y^{4}}+\frac{\sin^{4}\theta}{y^{8}x^{4}})=\frac{97(2)(\sin \theta)(\cos\theta)}{xy(x^{2}+y^{2})}

x 4 y 4 ( sin 4 θ x 8 x 4 + sin 4 θ y 8 x 4 ) = 97 ( 2 ) ( sin θ ) x ( x 2 + y 2 ) . cos θ y x^{4}y^{4}(\frac{\sin^{4}\theta}{x^{8}x^{4}}+\frac{\sin^{4}\theta}{y^{8}x^{4}})=\frac{97(2)(\sin \theta)}{x(x^{2}+y^{2})}.\frac{\cos\theta}{y}

sin 4 θ ( y 4 x 8 + 1 y 4 ) = 97 ( 2 ) sin 2 θ x 2 ( x 2 + y 2 ) \sin^{4}\theta(\frac{y^{4}}{x^{8}}+\frac{1}{y^{4}})=\frac{97(2)\sin^{2} \theta}{x^{2}(x^{2}+y^{2})}

sin 2 θ ( y 8 + x 8 x 8 y 4 ) = 97 ( 2 ) x 2 ( x 2 + y 2 ) \sin^{2}\theta(\frac{y^{8}+x^{8}}{x^{8}y^{4}})=\frac{97(2)}{x^{2}(x^{2}+y^{2})}

sin 2 θ = 97 ( 2 ) x 6 y 4 ( x 2 + y 2 ) ( x 8 + y 8 ) \sin^{2}\theta=\frac{97(2)x^{6}y^{4}}{(x^{2}+y^{2})(x^{8}+y^{8})}

Similarly,

cos 2 θ = 97 ( 2 ) x 4 y 6 ( x 2 + y 2 ) ( x 8 + y 8 ) \cos^{2}\theta=\frac{97(2)x^{4}y^{6}}{(x^{2}+y^{2})(x^{8}+y^{8})}

We know,

sin 2 θ + cos 2 θ = 1 \sin^{2}\theta+\cos^{2}\theta=1

Placing values,

97 ( 2 ) x 6 y 4 ( x 2 + y 2 ) ( x 8 + y 8 ) + 97 ( 2 ) x 4 y 6 ( x 2 + y 2 ) ( x 8 + y 8 ) = 1 \frac{97(2)x^{6}y^{4}}{(x^{2}+y^{2})(x^{8}+y^{8})}+\frac{97(2)x^{4}y^{6}}{(x^{2}+y^{2})(x^{8}+y^{8})}=1

97 ( 2 ) x 4 y 4 ( x 2 + y 2 ) ( x 2 + y 2 ) ( x 8 + y 8 ) = 1 \frac{97(2)x^{4}y^{4}(x^{2}+y^{2})}{(x^{2}+y^{2})(x^{8}+y^{8})}=1

97 ( 2 ) x 4 y 4 = x 8 + y 8 97(2)x^{4}y^{4}=x^{8}+y^{8}

x 4 y 4 + y 4 x 4 = 194 \frac{x^{4}}{y^{4}}+\frac{y^{4}}{x^{4}}=194

x 2 y 2 + y 2 x 2 = 14 \frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}}=14

x y + y x = 4 \frac{x}{y}+\frac{y}{x}=4

Pulkit Gupta
Jan 4, 2016

Truly, the problem is beautiful and would be a delight for algebra lovers.

sin θ x = cos θ y = k \large \frac{\sin\theta}{x} =\frac{\cos\theta}{y} = k

Then, sin θ = x k , cos θ = y k \large \sin \theta = xk , \cos \theta = yk .

Note that sin 2 θ + cos 2 θ \large \sin^2 \theta \ + \cos^2 \theta = 1. This implies, ( x k ) 2 + ( y k ) 2 = 1 \large (xk)^2 + (yk)^2 = 1 We then obtain, x 2 + y 2 = 1 k 2 \large x^2 + y^2 = \frac{1}{k^2} .

We now substitute the values of sin θ , cos θ \large \sin \theta , \cos \theta in the given equation.

On simplifying, we obtain k 2 ( x 4 y 4 + y 4 x 4 ) \large k^2( \frac{x^4}{y^4} + \frac{y^4}{x^4}) = 194 x 2 + y 2 \frac{194}{x^2+y^2} .

Putting the value of k 2 \large k^2 in the above equation, we obtain ( x 4 y 4 + y 4 x 4 ) \large ( \frac{x^4}{y^4} + \frac{y^4}{x^4}) = 194 \large 194 .

Put x 4 y 4 = tan 4 θ = a , y 4 x 4 = cot 4 θ = b \large \frac{x^4}{y^4} = \tan^4 \theta = a , \frac{y^4}{x^4}= \cot^4 \theta = b . Note that ab =1.

At this stage, we have a 4 + b 4 = 194 \large a^4 + b^4=194 . On observation, we notice that we have to calculate a + b.

Writing ( a 4 + b 4 ) = ( ( a + b ) 2 2 a b ) 2 2 ( a 2 ) ( b 2 ) = 194 \large (a^4+b^4) = {((a+b)^2 -2ab})^2 - 2(a^2)(b^2) =194 and putting the value of ab=1 , we obtain ( ( a + b ) 2 2 ) 2 = 196 \large ((a+b)^2 -2)^2 = 196

Put ( a + b ) 2 \large (a+b)^2 for T, expand the equation and solve the quadratic so obtained to get the required positive value of T.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...