S = n = 1 ∑ 2 0 1 5 ( n + 1 ) ( lo g n n + 1 ( n + 1 ) ) n ( lo g n n + 1 ( n ) )
If S can be expressed as B A , where A , B are positive co-prime integers, find A + B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice Problem! And a Fantastic Solution :)
Questions to ponder about : What would be it's partial sum? What would be it's infinite sum?
S ⇒ A + B = n = 1 ∑ 2 0 1 5 ( n + 1 ) lo g n n + 1 ( n + 1 ) n lo g n n + 1 ( n ) = n = 1 ∑ 2 0 1 5 ( n + 1 ) lo g n n + 1 ( n + 1 ) ( n n + 1 ) lo g n n + 1 ( n ) lo g n n + 1 ( n ) n = ( n n + 1 ) lo g n n + 1 ( n ) = n = 1 ∑ 2 0 1 5 ( n n + 1 ) lo g n n + 1 2 ( n + 1 ) ( n n + 1 ) lo g n n + 1 2 ( n ) = n = 1 ∑ 2 0 1 5 ( n n + 1 ) − ( lo g n n + 1 2 ( n + 1 ) − lo g n n + 1 2 ( n ) ) = n = 1 ∑ 2 0 1 5 ( n n + 1 ) − ( lo g n n + 1 ( n + 1 ) + lo g n n + 1 ( n ) ) ( lo g n n + 1 ( n + 1 ) − lo g n n + 1 ( n ) ) = n = 1 ∑ 2 0 1 5 ( n n + 1 ) − ( lo g n n + 1 ( n ( n + 1 ) ) ) ( lo g n n + 1 ( n n + 1 ) ) lo g n n + 1 ( n n + 1 ) = 1 = n = 1 ∑ 2 0 1 5 ( n n + 1 ) ( lo g n n + 1 ( n ( n + 1 ) ) ) 1 = n = 1 ∑ 2 0 1 5 n ( n + 1 ) 1 = n = 1 ∑ 2 0 1 5 ( n 1 − n + 1 1 ) = 1 − 2 0 1 6 1 = 2 0 1 6 2 0 1 5 = 4 0 3 1
W o w ! !
Problem Loading...
Note Loading...
Set Loading...
n = 1 ∑ 2 0 1 5 ( n + 1 ) lo g n n + 1 n + 1 n lo g n n + 1 n
Let's simplify the above expression ,
Let x = lo g n n + 1 n and y = lo g n n + 1 n + 1 .
Now ,
y = lo g n n + 1 ( n n + 1 × n ) = lo g n n + 1 n n + 1 + lo g n n + 1 n
Therefore , y = 1 + x .
→ ( n + 1 ) lo g n n + 1 n + 1 n lo g n n + 1 n = ( n + 1 ) y n x = ( n + 1 ) x + 1 n x
→ ( n + 1 ) x n x × n + 1 1 = ( n n + 1 ) − x × n + 1 1
→ ( n n + 1 ) − lo g n n + 1 n × n + 1 1
→ n 1 × n + 1 1 = n ( n + 1 ) 1
Now , converting n ( n + 1 ) 1 → Partial fraction .
n ( n + 1 ) 1 = n 1 − n + 1 1
Therefore ,
x = n = 1 ∑ 2 0 1 5 ( n + 1 ) lo g n n + 1 n + 1 n lo g n n + 1 n = n = 1 ∑ 2 0 1 5 n 1 − n + 1 1
= 1 1 − 2 1 + 2 1 − 3 1 + . . . + 2 0 1 5 1 − 2 0 1 6 1
= 1 − 2 0 1 6 1 = 2 0 1 6 2 0 1 5
2 0 1 5 + 2 0 1 6 = 4 0 3 1