I love being inspired! (Part-2)

Algebra Level 5

S = n = 1 2015 n ( log n + 1 n ( n ) ) ( n + 1 ) ( log n + 1 n ( n + 1 ) ) \Large{ S = \displaystyle \sum_{n=1}^{2015} \dfrac{n^{ \left(\log_{\frac{n+1}{n}} (n) \right)}}{(n+1)^{ \left( \log_{\frac{n+1}{n}} (n+1) \right)}} }

If S S can be expressed as A B \dfrac{A}{B} , where A , B A,B are positive co-prime integers, find A + B A+B .

This problem is made by me and my friend Akshat Sharda.


The answer is 4031.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akshat Sharda
Sep 17, 2015

n = 1 2015 n log n + 1 n n ( n + 1 ) log n + 1 n n + 1 \displaystyle \sum_{n=1}^{2015} \frac{n^{\log_\frac{n+1}{n}n}} {(n+1)^{\log_\frac{n+1}{n}n+1}}

Let's simplify the above expression ,

Let x = log n + 1 n n x=\log_\frac{n+1}{n}n and y = log n + 1 n n + 1 y=\log_\frac{n+1}{n}n+1 .

Now ,

y = log n + 1 n ( n + 1 n × n ) = log n + 1 n n + 1 n + log n + 1 n n y=\log_\frac{n+1}{n}(\frac{n+1}{n}×n)=\log_\frac{n+1}{n}\frac{n+1}{n}+\log_\frac{n+1}{n}n

Therefore , y = 1 + x y=1+x .

n log n + 1 n n ( n + 1 ) log n + 1 n n + 1 = n x ( n + 1 ) y = n x ( n + 1 ) x + 1 \rightarrow \frac{n^{\log_\frac{n+1}{n}n}} {(n+1)^{\log_\frac{n+1}{n}n+1}}=\frac{n^{x}}{(n+1)^{y}}=\frac{n^{x}}{(n+1)^{x+1}}

n x ( n + 1 ) x × 1 n + 1 = ( n + 1 n ) x × 1 n + 1 \rightarrow \frac{n^{x}}{(n+1)^{x}}×\frac{1}{n+1}=(\frac{n+1}{n})^{-x}×\frac{1}{n+1}

( n + 1 n ) log n + 1 n n × 1 n + 1 \rightarrow (\frac{n+1}{n})^{-\log_\frac{n+1}{n}n}×\frac{1}{n+1}

1 n × 1 n + 1 = 1 n ( n + 1 ) \rightarrow \frac{1}{n}×\frac{1}{n+1}=\frac{1}{n(n+1)}

Now , converting 1 n ( n + 1 ) \frac{1}{n(n+1)}\rightarrow Partial fraction .

1 n ( n + 1 ) = 1 n 1 n + 1 \frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}

Therefore ,

x = n = 1 2015 n log n + 1 n n ( n + 1 ) log n + 1 n n + 1 = n = 1 2015 1 n 1 n + 1 x=\displaystyle \sum_{n=1}^{2015} \frac{n^{\log_\frac{n+1}{n}n}} {(n+1)^{\log_\frac{n+1}{n}n+1}}=\displaystyle \sum^{2015}_{n=1}\frac{1}{n}-\frac{1}{n+1}

= 1 1 1 2 + 1 2 1 3 + . . . + 1 2015 1 2016 =\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}

= 1 1 2016 = 2015 2016 =1-\frac{1}{2016}=\frac{2015}{2016}

2015 + 2016 = 4031 2015+2016=\boxed{4031}

Nice Problem! And a Fantastic Solution :)


Questions to ponder about : What would be it's partial sum? What would be it's infinite sum?

Satyajit Mohanty - 5 years, 9 months ago

Log in to reply

Partial sum : n n + 1 \frac{n}{n+1}

Infinite sum : 1 1

Akshat Sharda - 5 years, 9 months ago
Chew-Seong Cheong
Sep 22, 2015

S = n = 1 2015 n log n + 1 n ( n ) ( n + 1 ) log n + 1 n ( n + 1 ) = n = 1 2015 ( n + 1 n ) log n + 1 n ( n ) log n + 1 n ( n ) ( n + 1 ) log n + 1 n ( n + 1 ) n = ( n + 1 n ) log n + 1 n ( n ) = n = 1 2015 ( n + 1 n ) log n + 1 n 2 ( n ) ( n + 1 n ) log n + 1 n 2 ( n + 1 ) = n = 1 2015 ( n + 1 n ) ( log n + 1 n 2 ( n + 1 ) log n + 1 n 2 ( n ) ) = n = 1 2015 ( n + 1 n ) ( log n + 1 n ( n + 1 ) + log n + 1 n ( n ) ) ( log n + 1 n ( n + 1 ) log n + 1 n ( n ) ) = n = 1 2015 ( n + 1 n ) ( log n + 1 n ( n ( n + 1 ) ) ) ( log n + 1 n ( n + 1 n ) ) log n + 1 n ( n + 1 n ) = 1 = n = 1 2015 1 ( n + 1 n ) ( log n + 1 n ( n ( n + 1 ) ) ) = n = 1 2015 1 n ( n + 1 ) = n = 1 2015 ( 1 n 1 n + 1 ) = 1 1 2016 = 2015 2016 A + B = 4031 \begin{aligned} S & = \sum_{n=1}^{2015} \frac{\color{#3D99F6}{n}^{\log_{\frac{n+1}{n}}(n)}}{(n+1)^{\log_{\frac{n +1}{n}}(n+1)}} \\ & = \sum_{n=1}^{2015} \frac{\left(\frac{n+1}{n}\right)^{\log_{\frac{n+1}{n}}(n) \log_{\frac{n+1}{n}}(n)}}{(n+1)^{\log_{\frac{n +1}{n}}(n+1)}} \quad \quad \color{#3D99F6}{n = \left(\frac{n+1}{n}\right)^{\log_{\frac{n+1}{n}}(n)}} \\ & = \sum_{n=1}^{2015} \frac{\left(\frac{n+1}{n}\right)^{\log_{\frac{n+1}{n}}^2(n)}} {\left(\frac{n+1}{n}\right)^{\log_{\frac{n+1}{n}}^2(n+1)}} \\ & = \sum_{n=1}^{2015} \left(\frac{n+1}{n}\right)^{-\left(\log_{\frac{n+1}{n}}^2(n+1) - \log_{\frac{n+1}{n}}^2(n)\right)} \\ & = \sum_{n=1}^{2015} \left(\frac{n+1}{n}\right)^{-\left(\log_{\frac{n+1}{n}}(n+1) + \log_{\frac{n+1}{n}}(n)\right)\left(\log_{\frac{n+1}{n}}(n+1) - \log_{\frac{n+1}{n}}(n)\right)} \\ & = \sum_{n=1}^{2015} \left(\frac{n+1}{n}\right)^{-\left(\log_{\frac{n+1}{n}}(n(n+1)) \right) \left(\color{#3D99F6}{\log_{\frac{n+1}{n}}\left(\frac {n+1}{n}\right)}\right)} \quad \quad \color{#3D99F6}{\log_{\frac{n+1}{n}}\left(\frac {n+1}{n}\right) = 1} \\ & = \sum_{n=1}^{2015} \frac{1}{\left(\frac{n+1}{n}\right)^{\left( \log_{\frac{n+1}{n}}(n(n+1)) \right)}} \\ & = \sum_{n=1}^{2015} \frac{1}{n(n+1)} = \sum_{n=1}^{2015} \left( \frac{1}{n} - \frac{1}{n+1} \right) = 1 - \frac{1}{2016} = \frac{2015}{2016} \\ \\ \Rightarrow A+B & = \boxed{4031} \end{aligned}

W o w ! ! \huge Wow!!

Akshat Sharda - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...