I love factorials!

Algebra Level 1

Determine the value of n.


The answer is 10099.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

99 ! 101 ! 99 ! = 99 ! 101 ( 100 ) ( 99 ! ) 99 ! = 99 ! 99 ! ( 101 ( 100 1 ) ) = 1 10100 1 = 1 10099 \frac { 99! }{ 101!-99! } =\frac { 99! }{ 101(100)(99!)-99! } =\frac { 99! }{ 99!(101(100-1)) } =\frac { 1 }{ 10100-1 } =\frac { 1 }{ 10099 } , it is a matter of factoring.

99!/(101!-99!) = 1/(100*101 -1) = 1/(10099)

Bùi Trí
Dec 1, 2014

99 ! 101 ! 99 ! \frac{99!} {101!-99!} = 1 n \frac{1} {n} 99 ! 101 ( 100 ) ( 99 ! ) 99 ! \frac{99!} {101(100)(99!)-99!} = 1 n \frac{1} {n} 99 ! 99 ! \frac{99!} {99!} ( 1 101 ( 100 ) 1 \frac{1} {101(100)-1} ) = 1 n \frac{1} {n} 1 10100 1 \frac{1} {10100-1} = 1 n \frac{1} {n} n = 10100 1 n = 10100 - 1 n = 10099 n = 10099

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...