I see what you did there in 2016

Find the last three digits of 4 2016 + 2 × 6 2016 + 9 2016 \sqrt{4^{2016}+2\times6^{2016}+9^{2016}} .


The answer is 257.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sam Bealing
Jul 9, 2016

Let u = 2 2016 u=2^{2016} and v = 3 2016 v=3^{2016} :

4 2016 + 2 × 6 2016 + 9 2016 = ( 2 2 ) 2016 + 2 × ( 2 × 3 ) 2016 + ( 3 2 ) 2016 = u 2 + 2 u v + v 2 \sqrt{4^{2016}+2 \times 6^{2016}+9^{2016}}=\sqrt{\left (2^{2} \right)^{2016}+ 2 \times \left (2 \times 3 \right)^{2016}+\left (3^{2} \right)^{2016}}=\sqrt{u^2+2uv+v^2}

= ( u + v ) 2 = u + v = 2 2016 + 3 2016 \cdots=\sqrt{(u+v)^2}=u+v=2^{2016}+3^{2016}

So the problem is reduced to finiding 2 2016 2^{2016} and 3 2016 ( m o d 1000 ) 3^{2016} \pmod{1000} or equivalently ( m o d 8 ) \pmod{8} and ( m o d 125 ) \pmod{125} . We will use ϕ ( 125 ) = 100 \phi (125)=100 :

{ 2 2016 8 × 2 2013 0 ( m o d 8 ) 2 2016 2 16 ( 2 8 ) 2 6 2 36 ( m o d 125 ) 2 2016 536 ( m o d 1000 ) \begin{cases} 2^{2016} \equiv 8 \times 2^{2013} \equiv 0 & \pmod{8} \\ 2^{2016} \equiv 2^{16} \equiv \left (2^8 \right)^2 \equiv 6^2 \equiv 36 & \pmod{125} \end{cases} \implies 2^{2016} \equiv 536 \pmod{1000}

{ 3 2016 9 2013 1 ( m o d 8 ) 3 2016 3 16 ( 3 8 ) 2 6 1 2 96 ( m o d 125 ) 3 2016 721 ( m o d 1000 ) \begin{cases} 3^{2016} \equiv 9^{2013} \equiv 1 & \pmod{8} \\ 3^{2016} \equiv 3^{16} \equiv \left (3^8 \right)^2 \equiv 61^2 \equiv 96 & \pmod{125} \end{cases} \implies 3^{2016} \equiv 721 \pmod{1000}

2 2016 + 3 2016 536 + 721 257 ( m o d 1000 ) 2^{2016}+3^{2016} \equiv 536+721 \equiv \boxed{\boxed{257}} \pmod{1000}

Moderator note:

Good recognition of the algebraic pattern to determine the square root.

I'm new . Can you say how calculating mod 8 and mod 125 again changes to mod 1000.like for (2) 0 and 36 change to 536

Vishal Yadav - 4 years, 2 months ago

Log in to reply

You can look up Chinese Remainder Theorem (CRT) which guarantees if you have a set of mod equations where all the mods are pairwise coprime then there is a solution modulo their product.

Sam Bealing - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...