k = 0 ∑ m ( n 2 n − k ) ( k 2 n − k ) ⋅ 2 n − 2 k + 1 2 n − 4 k + 1 ⋅ 2 n − 2 k
Given that n is a positive integer and m and n are non-negative integers such that m ≤ n , which of the given option is the closed form expression of given summation above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution. Does anyone know if there is a nice combinatorial argument for proving this?
Well done (+1) :).
I did the same thing. I messed up in the beggining. We have to be extremely cautious.
Problem Loading...
Note Loading...
Set Loading...
k = 0 ∑ m ( n 2 n − k ) ( k 2 n − k ) 2 n − 2 k + 1 2 n − 4 k + 1 2 n − 2 k = = = = = = = k = 0 ∑ m k ! ( 2 n − 2 k ) ! n ! ( n − k ) ! 2 n − 2 k + 1 2 n − 4 k + 1 2 n − 2 k k = 0 ∑ m k ! ( 2 n − 2 k ) ! n ! ( n − k ) ! ( 1 − 2 n − 2 k + 1 2 k ) 2 n − 2 k k = 0 ∑ m { k ! ( 2 n − 2 k ) ! n ! ( n − k ) ! 2 n − 2 k − k k ! ( 2 n − 2 k + 1 ) ! n ! ( n − k ) ! 2 n − 2 k + 1 } k = 0 ∑ m k ! ( 2 n − 2 k − 1 ) ! n ! ( n − k − 1 ) ! 2 n − 2 k − 1 − k = 1 ∑ m ( k − 1 ) ! ( 2 n − 2 k + 1 ) ! n ! ( n − k ) ! 2 n − 2 k + 1 k = 0 ∑ m k ! ( 2 n − 2 k − 1 ) ! n ! ( n − k − 1 ) ! 2 n − 2 k − 1 − k = 0 ∑ m − 1 k ! ( 2 n − 2 k − 1 ) ! n ! ( n − k − 1 ) ! 2 n − 2 k − 1 m ! ( 2 n − 2 m − 1 ) ! n ! ( n − m − 1 ) ! 2 n − 2 m − 1 = m ! ( 2 n − 2 m ) ! n ! ( n − m ) ! 2 n − 2 m ( n − m 2 n − 2 m ) ( m n ) 2 n − 2 m