⎣ ⎡ π 1 ( x → ∞ lim n = 1 ∑ ∞ ( 2 n − 1 ) ( n − 1 ) ! ( − 1 ) n + 1 x 2 n − 1 ) 2 ⎦ ⎤ − 1
Evaluate the expression above.
For more problems like this, try this set .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
S ( x ) = n = 1 ∑ ∞ ( 2 n − 1 ) ( n − 1 ) ! ( − 1 ) n + 1 x 2 n − 1 = 1 ⋅ 0 ! x − 3 ⋅ 1 ! x 3 + 5 ⋅ 2 ! x 5 − ⋯ = ∫ e − x 2 d x = 2 π erf ( x ) + C = 2 π erf ( x ) where erf ( x ) is the error function and C , the constant of integration. Since S ( 0 ) = 0 , erf ( 0 ) = 0 , ⟹ C = 0
Therefore,
X = ⎣ ⎡ π 1 ( x → ∞ lim n = 1 ∑ ∞ ( 2 n − 1 ) ( n − 1 ) ! ( − 1 ) n + 1 x 2 n − 1 ) 2 ⎦ ⎤ − 1 = [ π 1 ( x → ∞ lim 2 π erf ( x ) ) 2 ] − 1 = [ π 1 ( 2 π ) 2 ] − 1 = 4 Note that erf ( ∞ ) = 1
Reference: Error function .