I Was Very Amazed At The Solution 11

Calculus Level 4

[ 1 π ( lim x n = 1 ( 1 ) n + 1 x 2 n 1 ( 2 n 1 ) ( n 1 ) ! ) 2 ] 1 \left[ \dfrac{1}{\pi} \left( \lim_{x \rightarrow \infty} \sum_{n=1}^{\infty} \dfrac{(-1)^{n+1} x^{2n - 1}}{(2n-1)(n-1)!} \right)^2 \right]^{-1}

Evaluate the expression above.


For more problems like this, try this set .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 22, 2017

S ( x ) = n = 1 ( 1 ) n + 1 x 2 n 1 ( 2 n 1 ) ( n 1 ) ! = x 1 0 ! x 3 3 1 ! + x 5 5 2 ! = e x 2 d x = π 2 erf ( x ) + C where erf ( x ) is the error function and C , the constant of integration. = π 2 erf ( x ) Since S ( 0 ) = 0 , erf ( 0 ) = 0 , C = 0 \begin{aligned} S(x) & = \sum_{n=1}^\infty \frac {(-1)^{n+1}x^{2n-1}}{(2n-1)(n-1)!} \\ & = \frac {x}{1 \cdot 0!} - \frac {x^3}{3 \cdot 1!} + \frac {x^5}{5 \cdot 2!} - \cdots \\ & = \int e^{-x^2} dx \\ & = \frac {\sqrt \pi}2 \text{ erf }(x) + C & \small \color{#3D99F6} \text{where erf }(x) \text{ is the error function and } C \text{, the constant of integration.} \\ & = \frac {\sqrt \pi}2 \text{ erf }(x) & \small \color{#3D99F6} \text{Since }S(0) = 0, \text{ erf }(0) = 0, \implies C = 0 \end{aligned}

Therefore,

X = [ 1 π ( lim x n = 1 ( 1 ) n + 1 x 2 n 1 ( 2 n 1 ) ( n 1 ) ! ) 2 ] 1 = [ 1 π ( lim x π 2 erf ( x ) ) 2 ] 1 Note that erf ( ) = 1 = [ 1 π ( π 2 ) 2 ] 1 = 4 \begin{aligned} X & = \left[ \frac 1\pi \left(\lim_{x \to \infty} \sum_{n=1}^\infty \frac {(-1)^{n+1}x^{2n-1}}{(2n-1)(n-1)!} \right)^2\right]^{-1} \\ & = \left[ \frac 1\pi \left(\lim_{x \to \infty} \frac {\sqrt \pi}2 \text{ erf }(x) \right)^2\right]^{-1} & \small \color{#3D99F6} \text{Note that erf }(\infty) = 1 \\ & = \left[ \frac 1\pi \left(\frac {\sqrt \pi}2 \right)^2\right]^{-1} \\ & = \boxed{4} \end{aligned}


Reference: Error function .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...