I Was Very Amazed At The Solution 14

Algebra Level 4

Let 3 x k = 2 x k 1 + x k 2 3x_k = 2x_{k-1}+x_{k-2} be a recurrence relation such that, x 1 = 1 x_1 = 1 and x 2 = 6 x_2 = 6 . Find the sum of the first 50 terms of the linear recurrence relation above.


For more problems like this, try this set .


The answer is 234.6875.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Christian Daang
Oct 12, 2017

It is difficult of course to list all 50 terms and add them one by one. So, first, find the characteristic polynomial of the recurrence equation. We have:

3 r 2 = 2 r + 1 r { 1 , 1 3 } \\ 3r^2 = 2r + 1 \implies r \in \left\{ 1, -\dfrac{1}{3} \right\}

Hence, x k = ( α 1 ) ( 1 k ) + ( α 2 ) ( 1 3 ) k x_k = (\alpha _1)(1^k) + (\alpha _2)\left(-\dfrac{1}{3}\right)^k .

To solve for the constants α 1 \alpha_1 and α 2 \alpha_2 , we need to substitute the given.

For k = 1 x 1 = 1 = α 1 α 2 3 k = 1 \implies x_1 = 1 = \alpha_1 - \dfrac{\alpha_2}{3} .

For k = 2 x 2 = 6 = α 1 + α 2 9 k = 2 \implies x_2 = 6 = \alpha_1 + \dfrac{\alpha_2}{9} .

subtracting the 2 equations yields: 5 = ( α 2 ) ( 1 9 + 1 3 ) α 2 = 5 ( 9 4 ) = 45 4 5 = (\alpha_2)\left(\dfrac{1}{9} + \dfrac{1}{3}\right) \implies \alpha_2 = 5\left(\dfrac{9}{4}\right) = \dfrac{45}{4} .

Then, the value of α 1 = 1 + ( 45 4 ) 3 = 1 + 15 4 = 19 4 \alpha_1 = 1 + \dfrac{\left(\dfrac{45}{4}\right)}{3} = 1 + \dfrac{15}{4} = \dfrac{19}{4} .

Therefore, x k = ( 19 4 ) ( 1 k ) + ( 45 4 ) ( 1 3 ) k \boxed{x_k = \left(\dfrac{19}{4}\right)(1^k) + \left(\dfrac{45}{4}\right)\left(-\dfrac{1}{3}\right)^k} .

We found already the general term for x k x_k . hence,

k = 1 50 x k = k = 1 50 ( ( 19 4 ) ( 1 k ) + ( 45 4 ) ( 1 3 ) k ) = k = 1 50 ( ( 19 4 ) ( 1 k ) ) + k = 1 50 ( ( 45 4 ) ( 1 3 ) k ) = ( 19 4 ) ( 50 ) + ( 45 4 ) k = 1 50 ( ( 1 3 ) k ) = 475 2 + ( 45 4 ) ( ( 1 3 ) ( 1 ( 1 3 ) 50 ) 1 ( 1 3 ) ) = 475 2 ( 45 4 ) ( ( 1 1 3 50 ) 4 ) = 475 2 ( 45 4 ) ( 3 50 1 ( 3 50 ) ( 4 ) ) 475 2 ( 45 4 ) ( 3 50 ( 3 50 ) ( 4 ) ) 475 2 ( 45 4 ) ( 1 4 ) 475 2 45 16 234.6875 . \displaystyle \begin{aligned} \sum_{k = 1}^{50} x_k &= \sum_{k = 1}^{50} \left( \left(\dfrac{19}{4}\right)(1^k) + \left(\dfrac{45}{4}\right)\left(-\dfrac{1}{3}\right)^k \right) \\ &= \sum_{k = 1}^{50} \left( \left(\dfrac{19}{4}\right)(1^k) \right) + \sum_{k = 1}^{50} \left( \left(\dfrac{45}{4}\right)\left(-\dfrac{1}{3}\right)^k \right) \\ &= \left(\dfrac{19}{4}\right)(50) + \left(\dfrac{45}{4}\right) \sum_{k = 1}^{50} \left( \left(-\dfrac{1}{3}\right)^k \right) \\ & = \dfrac{475}{2} + \left(\dfrac{45}{4}\right) \left(\dfrac{\left(-\dfrac{1}{3}\right)\left( 1-\left(-\dfrac{1}{3}\right)^{50}\right) }{1- \left( -\dfrac{1}{3}\right)} \right) \\ &= \dfrac{475}{2} - \left(\dfrac{45}{4}\right) \left(\dfrac{\left( 1-\dfrac{1}{3^{50}}\right)}{4} \right) \\ & = \dfrac{475}{2} - \left(\dfrac{45}{4}\right) \left(\dfrac{3^{50} - 1}{(3^{50})(4)} \right) \approx \dfrac{475}{2} - \left(\dfrac{45}{4}\right) \left(\dfrac{3^{50}}{(3^{50})(4)} \right) \\ &\approx \dfrac{475}{2} - \left(\dfrac{45}{4}\right) \left(\dfrac{1}{4} \right) \approx \dfrac{475}{2} - \dfrac{45}{16} \\ & \approx \boxed{234.6875} . \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...