I Was Vey Amaze At The Solution 2

Calculus Level 4

0 u e u 1 d u \large \int_0^\infty \frac u{e^u - 1} \ du

Find the value of the closed form of the above integral to 3 decimal places.

Clarification: e 2.71828 e \approx 2.71828 denotes the Euler's number .


For more problems like this, try answering this set .


The answer is 1.6449340668482262.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Brian Moehring
Mar 3, 2017

Use the substitution x = 1 e u x = 1 - e^{-u} to rewrite the integral: 0 u e u 1 d u = 0 u 1 e u ( e u d u ) = 0 1 ln ( 1 x ) x d x \int_0^\infty \frac{u}{e^u-1}\,du = \int_0^\infty \frac{u}{1 - e^{-u}}\,(e^{-u}du) = \int_0^1 \frac{-\ln(1-x)}{x}\,dx

Then using the usual Maclaurin series, for x < 1 |x|<1 , ln ( 1 x ) x = 1 x n = 1 1 n x n = n = 1 1 n x n 1 \frac{-\ln(1-x)}{x} = \frac{1}{x}\cdot \sum_{n=1}^\infty \frac{1}{n}x^n = \sum_{n=1}^\infty \frac{1}{n}x^{n-1} and integrating, 0 1 ln ( 1 x ) x d x = n = 1 0 1 1 n x n 1 = n = 1 1 n 2 = π 2 6 1.645 \int_0^1 \frac{-\ln(1-x)}{x}\,dx = \sum_{n=1}^\infty \int_0^1 \frac{1}{n} x^{n-1} = \sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6} \approx \boxed{1.645}

Kushal Bose
Mar 8, 2017

0 u e u 1 d u = 0 u e u 1 e u d u = 0 u r = 1 e r u d u \int_{0}^{\infty} \dfrac{u}{e^u-1} du \\ = \int_{0}^{\infty} \dfrac{u e^{-u}}{1-e^{-u}} du \\ =\int_{0}^{\infty} u \sum_{r=1}^{\infty} e^{-ru} du

Now evaluate 0 u e r u d u = 1 r 2 \int_{0}^{\infty} u e^{-ru} du=\dfrac{1}{r^2} by using Integration By-Parts.

So, the given integral becomes r = 1 0 u e r u d u = r = 1 1 r 2 = π 2 6 \sum_{r=1}^{\infty} \int_{0}^{\infty} u e^{-ru} du = \sum_{r=1}^{\infty} \dfrac{1}{r^2} =\dfrac{\pi^2}{6}

Ayush Sharma
Jul 22, 2017

I hope it makes sense

Christian Daang
Mar 3, 2017

By the fact that:

ζ ( z ) × Γ ( z ) = 0 u z 1 e u 1 du ζ ( 2 ) × Γ ( 2 ) = 0 u 2 1 e u 1 du π 2 6 × ( 2 1 ) ! = 0 u e u 1 du π 2 6 1.6449340668482262 = 0 u e u 1 du \begin{aligned} \displaystyle \zeta(z) \times \Gamma(z) = \int_{0}^{\infty} \cfrac{u^{z - 1}}{e^u - 1} \ \text{du} \implies \zeta(2) \times \Gamma(2) & = \int_{0}^{\infty} \cfrac{u^{2 - 1}}{e^u - 1} \ \text{du} \\ \implies \cfrac{\pi^2}{6} \times (2 - 1)! & = \int_{0}^{\infty} \cfrac{u}{e^u - 1} \ \text{du} \\ \implies \boxed{\cfrac{\pi^2}{6} \approx 1.6449340668482262 } & = \int_{0}^{\infty} \cfrac{u}{e^u - 1} \ \text{du} \end{aligned}

Use Brilliant.org reference since it is available.

Chew-Seong Cheong - 4 years, 3 months ago

Log in to reply

Ok ok sir, for the second time. XD Thanks for editing it out. :) I will use Brilliant.org reference next time. :)

Christian Daang - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...