I Was Vey Amaze At The Solution 3

Calculus Level 4

i ( Li 2 ( i + 1 2 ) Li 2 ( i ) + Li 2 ( i ) Li 2 ( i 1 2 ) ) 2 \cfrac{i\left(\operatorname{Li}_2\left(\cfrac{i+1}{2}\right)-\operatorname{Li}_2\left(i\right)+\operatorname{Li}_2\left(-i\right)-\operatorname{Li}_2\left(-\cfrac{i-1}{2}\right)\right)}{2}

If the above can be expressed in the form of π ln ( q ) r \cfrac{\pi \ln{(q)}}{r} , where q q and r r are both positive integers and q q being a prime, find q + r q + r .


Notations:


For more problems like this, try answering this set .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
Mar 28, 2017

Using the Landen identity L i 2 ( z ) = 1 2 log 2 ( 1 z ) L i 2 ( z 1 z ) \mathrm{Li}_2(z) \; = \; -\tfrac12\log^2(1-z) - \mathrm{Li}_2\big(\tfrac{z}{1-z}\big) we deduce that L i 2 ( 1 2 ( 1 + i ) ) = 1 2 log 2 ( 1 2 ( 1 i ) ) L i 2 ( i ) L i 2 ( 1 2 ( 1 i ) ) = 1 2 log 2 ( 1 2 ( 1 + i ) ) L i 2 ( i ) \begin{aligned} \mathrm{Li}_2\big(\tfrac12(1+i)\big) & = -\tfrac12\log^2\big(\tfrac12(1-i)\big) - \mathrm{Li}_2(-i) \\ \mathrm{Li}_2\big(\tfrac12(1-i)\big) & = -\tfrac12\log^2\big(\tfrac12(1+i)\big) - \mathrm{Li}_2(i) \end{aligned} and hence L i 2 ( 1 2 ( 1 + i ) ) L i 2 ( i ) + L i 2 ( i ) L i 2 ( 1 2 ( 1 i ) ) = 1 2 log 2 ( 1 2 ( 1 + i ) ) 1 2 log 2 ( 1 2 ( 1 i ) ) = 1 2 [ log ( 1 2 ( 1 + i ) ) + log ( 1 2 ( 1 i ) ) ] [ log ( 1 2 ( 1 + i ) ) log ( 1 2 ( 1 i ) ) ] = 1 2 × ln 1 2 × log i = 1 4 π i ln 2 \begin{aligned} \mathrm{Li}_2\big(\tfrac12(1+i)\big) & - \mathrm{Li}_2(i) + \mathrm{Li}_2(-i) - \mathrm{Li}_2\big(\tfrac12(1-i)\big) \\ & = \tfrac12\log^2\big(\tfrac12(1+i)\big) - \tfrac12\log^2\big(\tfrac12(1-i)\big) \\ & = \tfrac12\big[\log\big(\tfrac12(1+i)\big) + \log\big(\tfrac12(1-i)\big)\big]\big[\log\big(\tfrac12(1+i)\big) - \log\big(\tfrac12(1-i)\big)\big] \\ & = \tfrac12 \times \ln\tfrac12 \times \log i \; = \; -\tfrac14\pi i\ln 2 \end{aligned} and hence 1 2 i ( L i 2 ( 1 2 ( 1 + i ) ) L i 2 ( i ) + L i 2 ( i ) L i 2 ( 1 2 ( 1 i ) ) ) = 1 8 π ln 2 \tfrac12i\Big( \mathrm{Li}_2\big(\tfrac12(1+i)\big) - \mathrm{Li}_2(i) + \mathrm{Li}_2(-i) - \mathrm{Li}_2\big(\tfrac12(1-i)\big)\Big) \; =\; \tfrac18\pi \ln2 making the answer 2 + 8 = 10 2+8 = \boxed{10} .

How did you transform the log ( 1 2 ( 1 + i ) ) + log ( 1 2 ( 1 i ) ) \log \left( \cfrac{1}{2} \left(1+i\right) \right) + \log \left( \cfrac{1}{2} \left(1-i\right) \right) to ln 1 2 \ln \cfrac{1}{2} ?

Mark Recio - 4 years, 2 months ago

Log in to reply

We are working with the principal branch of the argument, and log a b = log a + log b \log ab = \log a + \log b works for a , b a,b with positive real part.

Mark Hennings - 4 years, 2 months ago
Tapas Mazumdar
Mar 28, 2017

Using the definition of the polylogarithm function

Li s ( z ) = k = 1 z k k s \operatorname{Li}_s (z) = \displaystyle \sum_{k=1}^{\infty} \dfrac{z^k}{k^s}

Let us denote

B = i [ { Li 2 ( i ) Li 2 ( i ) } S 1 + { Li 2 ( i + 1 2 ) Li 2 ( i 1 2 ) } S 2 ] 2 \mathfrak{B} = \dfrac{ i \bigg[ {\color{#D61F06} \overbrace{ \left\{ \operatorname{Li}_2 (-i) - \operatorname{Li}_2 (i) \right\} }^{S_1} } + {\color{#3D99F6} \overbrace{ \left\{ \operatorname{Li}_2 \left( \dfrac{i+1}{2} \right) - \operatorname{Li}_2 \left( - \dfrac{i-1}{2} \right) \right\} }^{S_2} } \bigg] }{2}

Solving S 1 : \large \text{Solving } {\color{#D61F06} S_1} :

Li 2 ( i ) = k = 1 ( i ) k k 2 = ( i ) 1 2 + ( 1 ) 2 2 + i 3 2 + 1 4 2 + Li 2 ( i ) = k = 1 i k k 2 = i 1 2 + ( 1 ) 2 2 + ( i ) 3 2 + 1 4 2 + S 1 = Li 2 ( i ) Li 2 ( i ) = 2 i ( 1 1 2 1 3 2 + 1 5 2 1 7 2 + ) = 2 i k = 0 ( 1 ) k ( 2 k + 1 ) 2 \operatorname{Li}_2 (-i) = \displaystyle \sum_{k=1}^{\infty} \dfrac{(-i)^k}{k^2} = \dfrac{(-i)}{1^2} + \dfrac{(-1)}{2^2} + \dfrac{i}{3^2} + \dfrac{1}{4^2} + \cdots \\ \operatorname{Li}_2 (i) = \displaystyle \sum_{k=1}^{\infty} \dfrac{i^k}{k^2} = \dfrac{i}{1^2} + \dfrac{(-1)}{2^2} + \dfrac{(-i)}{3^2} + \dfrac{1}{4^2} + \cdots \\ \\ \implies S_1 = \operatorname{Li}_2 (-i) - \operatorname{Li}_2 (i) = -2i \left( \dfrac{1}{1^2} - \dfrac{1}{3^2} + \dfrac{1}{5^2} - \dfrac{1}{7^2} + \cdots \right) = -2i \displaystyle \sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2}

The sum k = 0 ( 1 ) k ( 2 k + 1 ) 2 \displaystyle \sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2} is a known constant called the Catalan's constant (denoted normally by G G ).

Thus, S 1 = 2 i G \color{#D61F06} S_1 = -2i G .

Solving S 2 : \large \text{Solving } {\color{#3D99F6} S_2} :

We can write down

i + 1 2 = e i π / 4 2 1 i 2 = e i π / 4 2 \dfrac{i+1}{2} = \dfrac{e^{{i \pi}/4}}{\sqrt{2}} \\ \dfrac{1-i}{2} = \dfrac{e^{{-i \pi}/4}}{\sqrt{2}}

Now

Li 2 ( e i π / 4 2 ) = ( e i π / 4 2 ) 1 2 + ( e i π / 4 2 ) 2 2 2 + ( e i π / 4 2 ) 3 3 2 + Li 2 ( e i π / 4 2 ) = ( e i π / 4 2 ) 1 2 + ( e i π / 4 2 ) 2 2 2 + ( e i π / 4 2 ) 3 3 2 + S 2 = Li 2 ( e i π / 4 2 ) Li 2 ( e i π / 4 2 ) = m = 0 2 i sin ( ( 2 m + 1 ) π 4 ) 2 ( 2 m + 1 ) ( 2 m + 1 ) 2 = i k = 0 ( 1 2 ) k 1 ( 2 k + 1 ) 2 \operatorname{Li}_2 \left( \dfrac{e^{{i \pi}/4}}{\sqrt{2}} \right) = \dfrac{\left( \frac{e^{{i \pi}/4}}{\sqrt{2}} \right)}{1^2} + \dfrac{ {\left( \frac{e^{{i \pi}/4}}{\sqrt{2}} \right)}^2 }{2^2} + \dfrac{ {\left( \frac{e^{{i \pi}/4}}{\sqrt{2}} \right)}^3 }{3^2} + \cdots \\ \operatorname{Li}_2 \left( \dfrac{e^{{-i \pi}/4}}{\sqrt{2}} \right) = \dfrac{\left( \frac{e^{{-i \pi}/4}}{\sqrt{2}} \right)}{1^2} + \dfrac{ {\left( \frac{e^{{-i \pi}/4}}{\sqrt{2}} \right)}^2 }{2^2} + \dfrac{ {\left( \frac{e^{{-i \pi}/4}}{\sqrt{2}} \right)}^3 }{3^2} + \cdots \\ \\ \implies S_2 = \operatorname{Li}_2 \left( \dfrac{e^{{i \pi}/4}}{\sqrt{2}} \right) - \operatorname{Li}_2 \left( \dfrac{e^{{-i \pi}/4}}{\sqrt{2}} \right) = \displaystyle \sum_{m=0}^{\infty} \dfrac{ 2i \sin \left( \frac{(2m+1) \pi}{4} \right) }{ {\sqrt{2}}^{(2m+1)} (2m+1)^2 } = i \sum_{k=0}^{\infty} {\left( - \dfrac 12 \right)}^k \dfrac{1}{(2k+1)^2}

The sum k = 0 ( 1 2 ) k 1 ( 2 k + 1 ) 2 \displaystyle \sum_{k=0}^{\infty} {\left( - \dfrac 12 \right)}^k \dfrac{1}{(2k+1)^2} evaluates to 2 G π ln ( 2 ) 4 2G - \dfrac{\pi \ln(2)}{4} (I wasn't able to find this closed form on my own).

Thus, S 2 = 2 i G i π ln ( 2 ) 4 \color{#3D99F6} S_2 = 2iG - \dfrac{i \pi \ln(2)}{4}

Therefore

S 1 + S 2 = i π ln ( 2 ) 4 {\color{#D61F06} S_1} + {\color{#3D99F6} S_2} = - \dfrac{i \pi \ln(2)}{4}

Hence

B = i ( i π ln ( 2 ) 4 ) 2 = π ln ( 2 ) 8 \mathfrak{B} = \dfrac{i \left( - \dfrac{i \pi \ln(2)}{4} \right)}{2} = \dfrac{\pi \ln(2)}{8}

which gives q + r = 2 + 8 = 10 q+r = 2+8 = \boxed{10} .

@Pi Han Goh , Can you hint me as to how to obtain the closed form for S 2 \color{#3D99F6} S_2 sir?

Tapas Mazumdar - 4 years, 2 months ago

Log in to reply

Nah, I'm not that good in polylogs, I'll summon someone who can actually address this: @Mark Hennings + @Ishan Singh

Pi Han Goh - 4 years, 2 months ago

You can obtain the formula for S 2 S_2 by applying the formula for S 1 S_1 to my solution of the problem.

Mark Hennings - 4 years, 2 months ago
Christian Daang
Mar 28, 2017

This is where this problem originally came from.

0 1 ln ( x + 1 ) x 2 + 1 \int_0^1 \cfrac{\ln (x + 1) }{x^2 + 1}

Let x = 1 u 1 + u d x = 2 ( u + 1 ) 2 d u x = \cfrac{1-u}{1+u} \implies dx = \cfrac{-2}{(u+1)^2} \ du and x + 1 = 2 1 + u x + 1 = \cfrac{2}{1+u} and x 2 + 1 = 2 ( 1 + u 2 ) ( 1 + u ) 2 x^2 + 1 = \cfrac{2(1 + u^2)}{(1 + u)^2 }

0 1 ln ( x + 1 ) x 2 + 1 d x = 1 0 ln ( 2 1 + u ) 2 ( 1 + u 2 ) ( 1 + u ) 2 2 ( u + 1 ) 2 d u = 0 1 ln ( 2 1 + u ) 1 + u 2 d u = 0 1 ( ln ( 2 ) 1 + u 2 ) d u 0 1 ( ln ( u + 1 ) 1 + u 2 ) d u \implies \int_0^1 \cfrac{\ln (x + 1) }{x^2 + 1} \ dx = \int_1^0 \cfrac{\ln \left( \cfrac{2}{1+u}\right) }{\cfrac{2(1 + u^2)}{(1 + u)^2 }} \cdot \cfrac{-2}{(u+1)^2} \ du \\ = \int_0^1 \cfrac{\ln \left( \cfrac{2}{1+u}\right) }{1 + u^2} \ du \\ = \int_0^1 \left( \cfrac{\ln (2)}{1+u^2}\right) \ du - \int_0^1 \left( \cfrac{\ln (u+1)}{1+u^2}\right) \ du

2 ( 0 1 ln ( x + 1 ) x 2 + 1 d x ) = 0 1 ( ln ( 2 ) 1 + u 2 ) d u 0 1 ln ( x + 1 ) x 2 + 1 d x = ln ( 2 ) arctan ( u ) 0 1 2 = ln ( 2 ) π 4 2 = π 8 ln ( 2 ) \implies 2 \left(\int_0^1 \cfrac{\ln (x + 1) }{x^2 + 1} \ dx \right) = \int_0^1 \left( \cfrac{\ln (2)}{1+u^2}\right) \ du \\ \therefore \ \int_0^1 \cfrac{\ln (x + 1) }{x^2 + 1} \ dx = \cfrac{\ln (2) \cdot \arctan (u) \bigg|_0^1}{2} = \cfrac{\ln (2) \cdot \cfrac{\pi}{4}}{2} = \cfrac{\pi}{8} \cdot \ln (2)

Now, when I put this integral to an online calculator, this is what it gives:

π ln ( 2 ) 4 i ( Li 2 ( i + 1 2 ) Li 2 ( i ) + Li 2 ( i ) Li 2 ( i 1 2 ) ) 2 \cfrac{{\pi}\ln\left(2\right)}{4}-\cfrac{\mathrm{i}\left(\operatorname{Li}_2\left(\cfrac{\mathrm{i}+1}{2}\right)-\operatorname{Li}_2\left(\mathrm{i}\right)+\operatorname{Li}_2\left(-\mathrm{i}\right)-\operatorname{Li}_2\left(-\cfrac{\mathrm{i}-1}{2}\right)\right)}{2}

and since i knew that 0 1 ln ( x + 1 ) x 2 + 1 = π 8 ln ( 2 ) \displaystyle \int_0^1 \cfrac{\ln (x + 1) }{x^2 + 1} = \cfrac{\pi}{8} \cdot \ln (2)

i ( Li 2 ( i + 1 2 ) Li 2 ( i ) + Li 2 ( i ) Li 2 ( i 1 2 ) ) 2 = π ln ( 2 ) 4 π 8 ln ( 2 ) = π ln ( 2 ) 8 \implies \cfrac{\mathrm{i}\left(\operatorname{Li}_2\left(\cfrac{\mathrm{i}+1}{2}\right)-\operatorname{Li}_2\left(\mathrm{i}\right)+\operatorname{Li}_2\left(-\mathrm{i}\right)-\operatorname{Li}_2\left(-\cfrac{\mathrm{i}-1}{2}\right)\right)}{2} = \cfrac{{\pi}\ln\left(2\right)}{4} - \cfrac{\pi}{8} \cdot \ln (2) = \cfrac{{\pi}\ln\left(2\right)}{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...