2 i ( L i 2 ( 2 i + 1 ) − L i 2 ( i ) + L i 2 ( − i ) − L i 2 ( − 2 i − 1 ) )
If the above can be expressed in the form of r π ln ( q ) , where q and r are both positive integers and q being a prime, find q + r .
Notations:
For more problems like this, try answering this set .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How did you transform the lo g ( 2 1 ( 1 + i ) ) + lo g ( 2 1 ( 1 − i ) ) to ln 2 1 ?
Log in to reply
We are working with the principal branch of the argument, and lo g a b = lo g a + lo g b works for a , b with positive real part.
Using the definition of the polylogarithm function
L i s ( z ) = k = 1 ∑ ∞ k s z k
Let us denote
B = 2 i [ { L i 2 ( − i ) − L i 2 ( i ) } S 1 + { L i 2 ( 2 i + 1 ) − L i 2 ( − 2 i − 1 ) } S 2 ]
Solving S 1 :
L i 2 ( − i ) = k = 1 ∑ ∞ k 2 ( − i ) k = 1 2 ( − i ) + 2 2 ( − 1 ) + 3 2 i + 4 2 1 + ⋯ L i 2 ( i ) = k = 1 ∑ ∞ k 2 i k = 1 2 i + 2 2 ( − 1 ) + 3 2 ( − i ) + 4 2 1 + ⋯ ⟹ S 1 = L i 2 ( − i ) − L i 2 ( i ) = − 2 i ( 1 2 1 − 3 2 1 + 5 2 1 − 7 2 1 + ⋯ ) = − 2 i k = 0 ∑ ∞ ( 2 k + 1 ) 2 ( − 1 ) k
The sum k = 0 ∑ ∞ ( 2 k + 1 ) 2 ( − 1 ) k is a known constant called the Catalan's constant (denoted normally by G ).
Thus, S 1 = − 2 i G .
Solving S 2 :
We can write down
2 i + 1 = 2 e i π / 4 2 1 − i = 2 e − i π / 4
Now
L i 2 ( 2 e i π / 4 ) = 1 2 ( 2 e i π / 4 ) + 2 2 ( 2 e i π / 4 ) 2 + 3 2 ( 2 e i π / 4 ) 3 + ⋯ L i 2 ( 2 e − i π / 4 ) = 1 2 ( 2 e − i π / 4 ) + 2 2 ( 2 e − i π / 4 ) 2 + 3 2 ( 2 e − i π / 4 ) 3 + ⋯ ⟹ S 2 = L i 2 ( 2 e i π / 4 ) − L i 2 ( 2 e − i π / 4 ) = m = 0 ∑ ∞ 2 ( 2 m + 1 ) ( 2 m + 1 ) 2 2 i sin ( 4 ( 2 m + 1 ) π ) = i k = 0 ∑ ∞ ( − 2 1 ) k ( 2 k + 1 ) 2 1
The sum k = 0 ∑ ∞ ( − 2 1 ) k ( 2 k + 1 ) 2 1 evaluates to 2 G − 4 π ln ( 2 ) (I wasn't able to find this closed form on my own).
Thus, S 2 = 2 i G − 4 i π ln ( 2 )
Therefore
S 1 + S 2 = − 4 i π ln ( 2 )
Hence
B = 2 i ( − 4 i π ln ( 2 ) ) = 8 π ln ( 2 )
which gives q + r = 2 + 8 = 1 0 .
@Pi Han Goh , Can you hint me as to how to obtain the closed form for S 2 sir?
Log in to reply
Nah, I'm not that good in polylogs, I'll summon someone who can actually address this: @Mark Hennings + @Ishan Singh
You can obtain the formula for S 2 by applying the formula for S 1 to my solution of the problem.
This is where this problem originally came from.
∫ 0 1 x 2 + 1 ln ( x + 1 )
Let x = 1 + u 1 − u ⟹ d x = ( u + 1 ) 2 − 2 d u and x + 1 = 1 + u 2 and x 2 + 1 = ( 1 + u ) 2 2 ( 1 + u 2 )
⟹ ∫ 0 1 x 2 + 1 ln ( x + 1 ) d x = ∫ 1 0 ( 1 + u ) 2 2 ( 1 + u 2 ) ln ( 1 + u 2 ) ⋅ ( u + 1 ) 2 − 2 d u = ∫ 0 1 1 + u 2 ln ( 1 + u 2 ) d u = ∫ 0 1 ( 1 + u 2 ln ( 2 ) ) d u − ∫ 0 1 ( 1 + u 2 ln ( u + 1 ) ) d u
⟹ 2 ( ∫ 0 1 x 2 + 1 ln ( x + 1 ) d x ) = ∫ 0 1 ( 1 + u 2 ln ( 2 ) ) d u ∴ ∫ 0 1 x 2 + 1 ln ( x + 1 ) d x = 2 ln ( 2 ) ⋅ arctan ( u ) ∣ ∣ ∣ ∣ 0 1 = 2 ln ( 2 ) ⋅ 4 π = 8 π ⋅ ln ( 2 )
Now, when I put this integral to an online calculator, this is what it gives:
4 π ln ( 2 ) − 2 i ( L i 2 ( 2 i + 1 ) − L i 2 ( i ) + L i 2 ( − i ) − L i 2 ( − 2 i − 1 ) )
and since i knew that ∫ 0 1 x 2 + 1 ln ( x + 1 ) = 8 π ⋅ ln ( 2 )
⟹ 2 i ( L i 2 ( 2 i + 1 ) − L i 2 ( i ) + L i 2 ( − i ) − L i 2 ( − 2 i − 1 ) ) = 4 π ln ( 2 ) − 8 π ⋅ ln ( 2 ) = 8 π ln ( 2 )
Problem Loading...
Note Loading...
Set Loading...
Using the Landen identity L i 2 ( z ) = − 2 1 lo g 2 ( 1 − z ) − L i 2 ( 1 − z z ) we deduce that L i 2 ( 2 1 ( 1 + i ) ) L i 2 ( 2 1 ( 1 − i ) ) = − 2 1 lo g 2 ( 2 1 ( 1 − i ) ) − L i 2 ( − i ) = − 2 1 lo g 2 ( 2 1 ( 1 + i ) ) − L i 2 ( i ) and hence L i 2 ( 2 1 ( 1 + i ) ) − L i 2 ( i ) + L i 2 ( − i ) − L i 2 ( 2 1 ( 1 − i ) ) = 2 1 lo g 2 ( 2 1 ( 1 + i ) ) − 2 1 lo g 2 ( 2 1 ( 1 − i ) ) = 2 1 [ lo g ( 2 1 ( 1 + i ) ) + lo g ( 2 1 ( 1 − i ) ) ] [ lo g ( 2 1 ( 1 + i ) ) − lo g ( 2 1 ( 1 − i ) ) ] = 2 1 × ln 2 1 × lo g i = − 4 1 π i ln 2 and hence 2 1 i ( L i 2 ( 2 1 ( 1 + i ) ) − L i 2 ( i ) + L i 2 ( − i ) − L i 2 ( 2 1 ( 1 − i ) ) ) = 8 1 π ln 2 making the answer 2 + 8 = 1 0 .