Consider a function f ( x ) which satisfies f ′ ( x ) = tan 2 x + ∫ − 4 π 4 π f ( x ) d x . If f ( 4 π ) = − 4 π , evaluate: ⌈ − 1 0 0 0 ∫ − 4 π 4 π f ( x ) d x ⌉ .
Notation: ⌈ ⋅ ⌉ denotes the ceiling function .
Bonus: Identify the function f ( x ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
When integrated with respect to x, ⟹ f ( x ) = ( tan x − x ) + ⎝ ⎜ ⎛ − 4 π ∫ 4 π f ( x ) d x ⎠ ⎟ ⎞ x + C
Now,
f ( 4 π ) ⟹ C = ( tan ( 4 π ) − 4 π ) + ⎣ ⎢ ⎡ − 4 π ∫ 4 π f ( x ) d x ⎦ ⎥ ⎤ ⋅ 4 π + C = − 4 π = − 1 − ⎣ ⎢ ⎡ − 4 π ∫ 4 π f ( x ) d x ⎦ ⎥ ⎤ ⋅ 4 π
Hence, f ( x ) = ( tan x − x ) + ⎣ ⎢ ⎡ − 4 π ∫ 4 π f ( x ) d x ⎦ ⎥ ⎤ x − ⎝ ⎜ ⎛ 1 + ⎝ ⎜ ⎛ 4 π ⋅ 4 − π ∫ 4 π f ( x ) d x ⎠ ⎟ ⎞ ⎠ ⎟ ⎞
integrating both sides with respect to x and whose limits is 4 − π to 4 π and let A = 4 − π ∫ 4 π f ( x ) d x
⟹ A = ( − ln ∣ cos x ∣ − 2 x 2 ) ∣ ∣ ∣ ∣ 4 − π 4 π + ( 2 A x 2 ) ∣ ∣ ∣ ∣ 4 − π 4 π − ( 1 + A 4 π ) x ∣ ∣ ∣ 4 − π 4 π
As both − ln ∣ cos x ∣ − 2 x 2 and 2 A x 2 are even functions, hence, when they are evaluated at limits − a and a , their result will be 0.
⟹ A = − ( 1 + A 4 π ) x ∣ ∣ ∣ 4 − π 4 π
⋮
A = − ( 1 + A 4 π ) ( 4 π − 4 − π ) A = − ( 1 + A 4 π ) ( 2 π )
⋮ A = − 2 π − A 8 π 2 A ( 1 + 8 π 2 ) = − 2 π A = − ( 1 + 8 π 2 ) 2 π = − 8 + π 2 4 π
⋮
⟹ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ − 1 0 0 0 4 − π ∫ 4 π f ( x ) d x ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ = ⌈ − 1 0 0 0 A ⌉ = ⌈ − 1 0 0 0 ( − 8 + π 2 4 π ) ⌉ = 7 0 4
Answer to the Bonus Question:
Since f ( x ) = ( tan x − x ) + ⎣ ⎢ ⎡ − 4 π ∫ 4 π f ( x ) d x ⎦ ⎥ ⎤ x − ⎝ ⎜ ⎛ 1 + ⎝ ⎜ ⎛ 4 π ⋅ 4 − π ∫ 4 π f ( x ) d x ⎠ ⎟ ⎞ ⎠ ⎟ ⎞ and
A = 4 − π ∫ 4 π f ( x ) d x = − 8 + π 2 4 π
⟹ f ( x ) = ( tan x − x ) − ( 8 + π 2 4 π ) x − ( 1 − ( 4 π ⋅ 8 + π 2 4 π ) )
or simply, f ( x ) = ( tan x − x ) − ( 8 + π 2 4 π ) x − ( 1 − 8 + π 2 π 2 )