I Wish I could Be Your Integral

Geometry Level 4

Which of the following curve encloses the largest area?

x 8 + y 8 = 1 x^8 +y^8 =1 x 2 + y 2 = 1 x^2 + y^2 = 1 x 4 + y 4 = 1 x^4 + y^4 = 1 x 6 + y 6 = 1 x^6 + y^6 = 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x 2 + y 2 = 1.......... ( 1 ) x 4 + y 4 = 1.......... ( 2 ) x 6 + y 6 = 1.......... ( 3 ) x 8 + y 8 = 1.......... ( 4 ) x 2 n + y 2 n = 1.......... a n d . . . . . . . . . . x 2 n + 2 m + y 2 n + 2 m = 1.......... n , m a n y + t i v e i n t e g e r . G i v e n x y a = 1 x 2 n 2 n . . . . . . . . . . . ( a ) . . . . . . . . . . . . . y b = 1 x 2 n + 2 m 2 n + 2 m . . . . . . . . . . ( b ) . S i n c e x 1 , e x c e p t a t t w o p o i n t s . 1 x 2 n + 2 m > 1 x 2 n . f o r a l l b u t t w o p o i n t s . A g a i n s i n c e t h e v a l u e u n d e r r a d i c a l s i g n i s l e s s t h a n o n e , h i g h e r r o o t g i v e s b i g g e r v a l u e . ( b ) h a s i t s r o o t b i g g e r b y 2 m s o a g a i n y b > y a . S o f o r e v e r y x , ( b ) h a s b i g g e r y . ( 4 ) w i l l h a v e t h e b i g g e s t a r e a . x^2 + y^2 = 1..........(1)\\ x^4 + y^4 = 1..........(2)\\ x^6 + y^6 = 1..........(3)\\ x^8 + y^8 = 1..........(4)\\ x^{2n }+ y^{2n }= 1..........and..........x^{2n+2m} + y^{2n+2m} = 1..........n, m\ any\ +tive\ integer.\\ Given\ x\ \ \ \ y_a=\sqrt[2n]{1- x^{2n} }...........(a).............y_b=\sqrt[2n+2m]{1- x^{2n+2m}}..........(b).\\ Since\ \ x\leq\ 1,\ except\ at\ two\ points. \\ 1- x^{2n+2m} >1- x^{2n}. \ for\ all\ but\ two\ points.\\ Again\ since\ the \ value\ under\ radical\ sign\ is\ less\ than\ one,\ higher\ root\ gives \ bigger\ value.\\ (b)\ has\ its\ root\ bigger\ by \ 2m \ \ \ so\ again\ y_b > y_a.\\ So\ for\ every\ x, (b)\ has \ bigger\ y.\\ \therefore\ (4)\ will\ have\ the\ biggest\ area.

We can plot the curves and verify that above is correct.
Note that through out the curve, only at two points all have same value. All other infinite points, the curve with higher power has bigger values.

Your solution does not really explain your reasoning in detail

Agnishom Chattopadhyay - 4 years, 7 months ago

Log in to reply

I have given detailed explanation now. I hope it is OK now !!

Niranjan Khanderia - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...