I wish there was a x = 0 n \displaystyle\sum_{x=0}^{n} on the left instead!

Calculus Level 5

If the value of the following limit

lim n ( n x ) ( m n ) x ( 1 m n ) n x \lim\limits_{n \to \infty} \dbinom{n}{x} \displaystyle\left( \frac{m}{n}\right)^{x}\displaystyle\left( 1-\frac{m}{n}\right)^{n-x}

for x = 5 x=5 and m = 5 m=5 is S S , evaluate 1000 S \left \lfloor{1000S}\right \rfloor .


The answer is 175.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Prakhar Gupta
Feb 5, 2015

Let's first of all replace x x and m m with 5 5 .

Let's us represent n C 5 ^{n}C_{5} by C 5 C_{5} lim n C 5 ( 5 n ) 5 ( 1 5 n ) n 5 \lim_{n\to \infty} C_{5}\Bigg( \dfrac{5}{n} \Bigg) ^{5} \Bigg( 1-\dfrac{5}{n} \Bigg) ^{n-5} lim n n ( n 1 ) ( n 2 ) ( n 3 ) ( n 4 ) 4 ! 5 5 n 5 ( 1 5 n ) n ( 1 5 n ) 5 \lim_{n\to\infty} \dfrac{n(n-1)(n-2)(n-3)(n-4)}{4!} \dfrac{5^{5}}{n^{5}}\dfrac{\Bigg( 1-\dfrac{5}{n} \Bigg)^{n}}{\Bigg( 1-\dfrac{5}{n} \Bigg) ^{5}} Distributing the limits over multiplication we get:- 5 5 5 ! lim n ( n 1 ) ( n 2 ) ( n 3 ) ( n 4 ) n 4 lim n ( 1 5 n ) n lim n ( 1 5 n ) 5 \dfrac{5^{5}}{5!} \lim_{n \to \infty} \dfrac{(n-1)(n-2)(n-3)(n-4)}{n^{4}} \dfrac{\lim_{n\to\infty} \Bigg( 1-\dfrac{5}{n} \Bigg) ^{n}}{\lim_{n \to \infty} \Bigg(1-\dfrac{5}{n} \Bigg) ^{5}} Solving Each limit separately we get:- 5 5 5 ! e 5 \boxed{\dfrac{5^{5}}{5!} e^{-5}}

Pranav Arora
Jul 4, 2014

Use Stirling's approximation. The answer is:

( 5 e ) 5 1 120 \boxed{\left(\dfrac{5}{e}\right)^5\cdot \dfrac{1}{120}}

Nicely done! ¨ \ddot\smile

Karthik Kannan - 6 years, 11 months ago
Abhishek Sinha
Aug 13, 2016

The result directly follows from Poisson Approximation of Binomial Distribution .

Akshay Mujumdar
Feb 26, 2015

Sorry for the unclear data in the last guys...... It says 1000S = (1000 * (5^5))/(5! * (e^5)). Hence, [1000S] = 175.

Akshay Mujumdar - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...