I Wonder How Many Solutions Exist

x 4 + 139 y 8 = 1553 x^{4}+139y^{8}=1553

How many integer solutions satisfy the above equation?

105 1 29 7 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chris Lewis
Apr 10, 2019

Both terms on the left-hand side are positive. We must have 139 y 8 1553 139y^8 \le 1553 , so y 8 1553 139 = 11.17 y^8 \le \frac{1553}{139} = 11.17\ldots , so the only possible values of y 8 y^8 for integer y y are 0 0 or 1 1 .

On substituting in, neither of these give an integer value for x x , so there are no solutions.

Nice! A complete oversight by myself in coming up with the question but it makes this one pretty short and simple.

William Allen - 2 years, 2 months ago

the number of solutions should be a multiple of 4 4 . How about that? :D

Haha, that's a very quick method given the options!

Chris Lewis - 2 years, 2 months ago

Haha love it!

William Allen - 2 years, 2 months ago
Mark Hennings
Apr 10, 2019

Since x 4 0 , 1 ( m o d 5 ) x^4 \equiv 0,1 \pmod{5} we deduce that x 4 + 139 y 8 1 , 0 , 1 ( m o d 5 ) x^4 + 139y^8 \equiv 1,0,-1 \pmod{5} . Since 1553 3 ( m o d 5 ) 1553 \equiv 3 \pmod{5} there can be no solutions to the equation.

William Allen
Apr 10, 2019

a 16 1 ( m o d 17 ) x 4 { 4 , 1 , 0 , 1 , 4 } , y 8 { 1 , 0 , 1 } when looking mod 17 Looking mod 17 gives x 4 + 3 y 8 6 ( m o d 17 ) and x 4 + 3 y 8 { 7 , 4 , 3 , 2 , 1 , 0 , 1 , 2 , 3 , 4 , 7 } 6 { 7 , 4 , 3 , 2 , 1 , 0 , 1 , 2 , 3 , 4 , 7 } so there are no integer solutions. a^{16} \equiv 1 \pmod{17} \implies x^{4} \in \left\{-4, -1, 0, 1, 4 \right\}, y^{8} \in \left\{-1, 0, 1 \right\} \text{ when looking mod 17} \\ \text{ Looking mod 17 gives } x^{4} + 3y^{8} \equiv 6 \pmod{17} \text{ and } x^{4} + 3y^{8} \in \left\{-7, -4, -3, -2, -1, 0, 1, 2, 3, 4, 7 \right\} \\ 6\notin \left\{-7, -4, -3, -2, -1, 0, 1, 2, 3, 4, 7 \right\} \text{ so there are no integer solutions. }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...