Ideal Gas Law Problem 1

Chemistry Level 2

A container has a volume of 1000 m 3 1000 \text{ m}^3 and allows the pressure to be 5 × 1 0 6 Pa 5\times10^6 \text{ Pa} . What is the maximum mass of hydrogen gas the container can store (in kilograms) at 2 5 C 25^\circ \text{C} ?

Assume that hydrogen is an ideal gas.

M r ( H X 2 ) = 2 M_r(\ce{H2})=2


You may refer to Chemistry - Ideal Gas .
2.02 × 1 0 3 kg 2.02\times10^3 \text{ kg} 4.04 × 1 0 3 kg 4.04\times10^3 \text{ kg} 4.81 × 1 0 4 kg 4.81\times10^4 \text{ kg} 0.04 × 1 0 6 kg 0.04\times10^6 \text{ kg}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Given:

V= 1000 m^3 => 10^6 L

P = 5,0×10^6 Pa => (9,87×10^-6) 49,35 atm

MM= 2,0 g/mol

R= 0,082 atm.L/mol.K

PV = nRT :. n=m/MM

PV = m/MM RT

m = PVMM/RT :.

m = 49,35 atm× 10^6 L × 2,0 g/mol ÷ 0,082 atm.L/mol.K × 298 K

m = 4,039 × 10^6 g -> 4,039 × 10^3 kg.

Deepak Sharma
Feb 5, 2014

P = 5 × 1 0 6 P a P=5\times10^6 Pa ; V = 1 0 3 m 3 V=10^3 m^3 ; T=298 K; R = 8.314 J K 1 m o l 1 R=8.314 JK^{-1}mol^{-1} ; M r = 2 × 1 0 3 k g M_{r}=2\times10^{-3} kg Therefore, using ideal gas equation PV=nRT, number of moles n= P V R T = 5 × 1 0 9 8.314 × 298 \frac{PV}{RT} =\frac{5\times10^9}{8.314\times298} So n = 2.02 × 1 0 6 n=2.02\times10^6 moles. Thus mass of hydrogen stored in the container= n × M r = 4.04 × 1 0 3 n\times M_{r} = 4.04\times10^3

forgot to convert 2g/mol into kg/mol

Laurence Uy - 6 years, 11 months ago

1 P a = 1 N m 2 a n d T = 298.16 K 1~Pa = 1~Nm^{-2}~and~T = 298.16 K

Lu Chee Ket - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...