Identity cosines

Geometry Level 3

α cos 2 3 θ + β cos 4 θ = 16 cos 6 θ + 9 cos 2 θ \large \alpha{\cos}^2 3\theta + \beta{\cos}^4\theta = 16 {\cos}^6\theta + 9 {\cos}^2\theta

Let α \alpha and β \beta be constants such that the equation above is a trigonometric identity. Find α + β \alpha + \beta .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ashish Menon
Jul 14, 2016

Relevant wiki: Proving Trigonometric Identites

α cos 2 3 θ + β cos 4 θ = 16 cos 6 θ + 9 cos 2 θ α ( 4 cos 3 θ 3 cos θ ) 2 + β cos 4 θ = 16 cos 6 θ + 9 cos 2 θ α ( 16 cos 6 θ + 9 cos 2 θ 24 cos 4 θ ) + β cos 4 θ = 16 cos 6 θ + 9 cos 2 θ 16 α cos 6 θ + 9 α cos 2 θ 24 α cos 4 θ + β cos 4 θ = 16 cos 6 θ + 9 cos 2 θ 16 α cos 6 θ + ( β 24 α ) cos 4 θ + 9 α cos 2 θ = 16 cos 6 θ + 0 cos 4 θ + 9 cos 2 θ Comparing the corresponding coefficients : 16 α = 16 α = 1 β 24 α = 0 β 24 × 1 = 0 β = 24 α + β = 1 + 24 = 25 \begin{aligned} \alpha{\cos}^2 3\theta + \beta{\cos}^4\theta & = 16 {\cos}^6\theta + 9 {\cos}^2\theta\\ \\ \alpha{\left(4\cos^3\theta - 3\cos\theta\right)}^2 + \beta{\cos}^4\theta & = 16 \cos^6\theta + 9 \cos^2\theta\\ \\ \alpha\left(16 \cos^6\theta + 9 \cos^2\theta - 24 \cos^4\theta\right) + \beta \cos^4\theta & = 16 \cos^6\theta + 9 \cos^2\theta\\ \\ 16\alpha \cos^6\theta + 9\alpha \cos^2\theta - 24\alpha \cos^4\theta + \beta \cos^4\theta & = 16 \cos^6\theta + 9 \cos^2\theta\\ \\ 16\alpha \cos^6\theta + \left(\beta - 24\alpha\right)\cos^4\theta + 9\alpha \cos^2\theta & = 16 \cos^6\theta + 0 \cos^4\theta + 9 \cos^2\theta\\ \\ \text{Comparing the corresponding coefficients}:-\\ \\ 16\alpha & = 16\\ \alpha & = 1\\ \\ \beta - 24 \alpha & = 0\\ \beta - 24×1 & = 0\\ \beta & = 24\\ \\ \implies \alpha + \beta & = 1 + 24\\ & = \color{#3D99F6}{\boxed{25}} \end{aligned}

Elegant solution, maan gaye janaab!

Hetansh Mehta - 4 years, 11 months ago

Log in to reply

Thank you bhai sahab!

Ashish Menon - 4 years, 11 months ago
Jon Haussmann
Jul 15, 2016

We are told that α cos 2 3 θ + β cos 4 θ = 16 cos 6 θ + 9 cos 2 θ \alpha \cos^2 3 \theta + \beta \cos^4 \theta = 16 \cos^6 \theta + 9 \cos^2 \theta is an identity, and we are asked to find α + β \alpha + \beta . We can set θ = 0 \theta = 0 , to get α + β = 25 \alpha + \beta = 25 .

Yeah, that is the hack method! :P

Ashish Menon - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...