This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
When evaluating a limit of the form 0^0, you need to know that it is in a indeterminate form. For instance, when evaluating the limit Sin[x]^x (which is 1 as x goes to 0), we say it is equal to x^x (since Sin[x] and x go to 0 at the same rate, i.e. limit as x->0 of Sin[x]/x is 1). Then we can see from the graph of x^x that its limit is 1.
Other than the times when we want it to be indeterminate, 0^0 = 1 seems to be the most useful choice for 0^0 . This convention allows us to extend definitions in different areas of mathematics that would otherwise require treating 0 as a special case. Notice that 0^0 is a discontinuity of the function f(x,y) = x^y, because no matter what number you assign to 0^0, you can't make x^y continuous at (0,0), since the limit along the line x=0 is 0, and the limit along the line y=0 is 1.
This means that depending on the context where 0^0 occurs, you might wish to substitute it with 1, indeterminate or undefined/nonexistent.