If Combinatorics goes Infinity

Given a fixed positive integer n n , if m m is a positive integer that satisfied ( m n 1 ) > ( m 1 n ) \binom{m}{n-1}>\binom{m-1}{n} And lim n m m a x n = a + b c \lim_{n\to\infty}\frac {m_{max}}n=\frac{a+\sqrt b}{c} for square-free integer b b and the smallest value of a a and c c (Just as usual, the simplest form). What is the value of a + b + c a+b+c ?

This question is not original but modified.


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Donglin Loo
Jul 13, 2018

( m n 1 ) > ( m 1 n ) \dbinom {m}{n-1}>\dbinom {m-1}{n}

( m n 1 ) = m ! ( n 1 ) ! ( m n + 1 ) ! \dbinom {m}{n-1}=\cfrac{m!}{(n-1)!(m-n+1)!}

( m 1 n ) = ( m 1 ) ! n ! ( m n 1 ) ! \dbinom {m-1}{n}=\cfrac{(m-1)!}{n!(m-n-1)!}

m ! ( n 1 ) ! ( m n + 1 ) ! > ( m 1 ) ! n ! ( m n 1 ) ! \cfrac{m!}{(n-1)!(m-n+1)!}>\cfrac{(m-1)!}{n!(m-n-1)!}

m ( m 1 ) ! ( n 1 ) ! ( m n + 1 ) ( m n ) ( m n 1 ) ! > ( m 1 ) ! n ( n 1 ) ! ( m n 1 ) ! \cfrac{m(m-1)!}{(n-1)!(m-n+1)(m-n)(m-n-1)!}>\cfrac{(m-1)!}{n(n-1)!(m-n-1)!}

m ( m n + 1 ) ( m n ) > 1 n \cfrac{m}{(m-n+1)(m-n)}>\cfrac{1}{n}

m n > ( m n + 1 ) ( m n ) mn>(m-n+1)(m-n)

( m n + 1 ) ( m n ) m n < 1 \cfrac{(m-n+1)(m-n)}{mn}<1

m n + 1 n m n m < 1 \cfrac{m-n+1}{n}\cdot\cfrac{m-n}{m}<1

( m n 1 + 1 n ) ( 1 n m ) < 1 (\cfrac{m}{n}-1+\cfrac{1}{n})(1-\cfrac{n}{m})<1

lim n ( m n 1 + 1 n ) ( 1 n m ) < lim n 1 \displaystyle{\lim_{n\to \infty}}(\cfrac{m}{n}-1+\cfrac{1}{n})(1-\cfrac{n}{m})<\displaystyle{\lim_{n\to \infty}}1

( lim n m n 1 + 0 ) ( 1 lim n n m ) < lim n 1 (\displaystyle{\lim_{n\to \infty}}\cfrac{m}{n}-1+0)(1-\displaystyle{\lim_{n\to \infty}}\cfrac{n}{m})<\displaystyle{\lim_{n\to \infty}}1

lim n ( m n 1 ) ( 1 n m ) < lim n 1 \displaystyle{\lim_{n\to \infty}}(\cfrac{m}{n}-1)(1-\cfrac{n}{m})<\displaystyle{\lim_{n\to \infty}}1

lim n ( m n ) ( m n ) < lim n ( m n ) \displaystyle{\lim_{n\to \infty}}(m-n)(m-n)<\displaystyle{\lim_{n\to \infty}}(mn)

lim n [ ( m n ) 2 m n ] < 0 \displaystyle{\lim_{n\to \infty}}[(m-n)^2-mn]<0

lim n ( m 2 3 m n + n 2 ) < 0 \displaystyle{\lim_{n\to \infty}}(m^2-3mn+n^2)<0

When m 2 3 m n + n 2 = 0 m^2-3mn+n^2=0 ,

m = 3 ± 9 4 2 n = 3 ± 5 2 n m=\cfrac{3\pm\sqrt{9-4}}{2}n=\cfrac{3\pm\sqrt{5}}{2}n

m n = 3 ± 5 2 \cfrac{m}{n}=\cfrac{3\pm\sqrt{5}}{2}

3 5 2 < lim n m n < 3 + 5 2 \therefore \cfrac{3-\sqrt{5}}{2}<\displaystyle{\lim_{n\to \infty}}\cfrac{m}{n}<\cfrac{3+\sqrt{5}}{2}

We'll focus on lim n m n < 3 + 5 2 \displaystyle{\lim_{n\to \infty}}\cfrac{m}{n}<\cfrac{3+\sqrt{5}}{2}

lim n ( m n 3 + 5 2 ) < 0 = lim n 0 \displaystyle{\lim_{n\to \infty}}(\cfrac{m}{n}-\cfrac{3+\sqrt{5}}{2})<0=\displaystyle{\lim_{n\to \infty}}0

lim n ( m m a x n 3 + 5 2 ) = 0 \therefore \displaystyle{\lim_{n\to \infty}}(\cfrac{m_{max}}{n}-\cfrac{3+\sqrt{5}}{2})=0

lim n m m a x n = 3 + 5 2 \Rightarrow \displaystyle{\lim_{n\to \infty}}\cfrac{m_{max}}{n}=\boxed{\cfrac{3+\sqrt{5}}{2}}

I find it a bit hard to explain why the equality holds instead of the inequality in my last part of solution.

Your solution is good! Use limit from the beginning seems reduce some work.

Kelvin Hong - 2 years, 11 months ago

Log in to reply

Thanks! The reason I found this solution is because I found the other solution a bit messy and somehow did not continue with it.

donglin loo - 2 years, 11 months ago
Kelvin Hong
Jul 12, 2018

This question is taken from William Lowell Putnam Mathematical Competition 2016. Modified.

m ! ( m n + 1 ) ! ( n 1 ) ! > ( m 1 ) ! ( m n 1 ) ! n ! m ( m n + 1 ) ( m n ) > 1 n m 2 3 m n + n 2 + m n < 0 \begin{aligned}\frac{m!}{(m-n+1)!(n-1)!}&>\frac{(m-1)!}{(m-n-1)!n!}\\\frac{m}{(m-n+1)(m-n)}&>\frac1n\\m^2-3mn+n^2+m-n&<0\end{aligned} Try to write m m in terms of n n , it can help us to calculate the limit. Hence, m 2 ( 3 n 1 ) m + n 2 n < 0 m^2-(3n-1)m+n^2-n<0 3 n 1 5 n 2 2 n + 1 2 < m < 3 n 1 + 5 n 2 2 n + 1 2 \frac{3n-1-\sqrt{5n^2-2n+1}}{2}<m<\frac{3n-1+\sqrt{5n^2-2n+1}}{2} Initially, I thought I have to consider how to make m m an integer, but then I knew that when n n goes infinity, the value of m m will approach the maximum value 3 n 1 + 5 n 2 2 n + 1 2 \dfrac{3n-1+\sqrt{5n^2-2n+1}}{2} , so the maximum of m m when n n goes infinity will be lim n m m a x lim n 3 n 1 + 5 n 2 2 n + 1 2 \lim_{n\to\infty}m_{max}\sim\lim_{n\to\infty}\dfrac{3n-1+\sqrt{5n^2-2n+1}}{2} Divided by n n , lim n m n = lim n 3 1 n + 5 2 n + 1 n 2 2 = 3 + 5 2 \begin{aligned}\lim_{n\to\infty}\frac mn&=\lim_{n\to\infty}\frac{3-\dfrac1n+\sqrt{5-\dfrac2n+\dfrac1{n^2}}}{2}\\&=\frac{3+\sqrt5}{2}\end{aligned} So the answer will be 3 + 5 + 2 = 10 3+5+2=\boxed{10} .

Additional Insight: The final value is 2.618 2.618 which is the golden ratio added 1! Wow!

Note that lim n m m a x = lim n 3 n 1 + 5 n 2 2 n + 1 2 \lim_{n\to\infty}m_{max}=\lim_{n\to\infty}\dfrac{3n-1+\sqrt{5n^2-2n+1}}{2} doesn't really mean anything (sure, both are infinite, so it's technically true, but the rest of the proof wouldn't follow). I think you either mean m m a x 3 n 1 + 5 n 2 2 n + 1 2 m_{max} \sim \dfrac{3n-1+\sqrt{5n^2-2n+1}}{2} or perhaps the more apparent statement that 0 < 3 n 1 + 5 n 2 2 n + 1 2 m m a x 1 0 < \dfrac{3n-1+\sqrt{5n^2-2n+1}}{2} - m_{max} \leq 1 Either would be sufficient for the rest of your proof.

Either way, overall a nice solution. Aside from the above issue, my solution would nearly be a word-for-word copy of yours.

Brian Moehring - 2 years, 11 months ago

Log in to reply

Well, I have spot the issues , but don't know how to write it properly, thanks for your explanation, I will try to modify my solution.

Kelvin Hong - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...