If only it were as easy as 1, 2, 3

Algebra Level 3

If z z is a complex number satisfying the equation

z + 1 z = z 2 + 1 z 2 < 0 , z+\frac{1}{z}=z^2+\frac{1}{z^2}<0,

what is the value of z 3 + 1 z 3 z^3+\frac{1}{z^3} ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

14 solutions

Ayush Verma
Nov 19, 2014

Some good solution has been posted,yet i am writing this because this is different(i think so)

z c a n t b e 0. j u s t m u l t i p l y b o t h s i d e b y z + 1 z ( z 2 + 1 z 2 ) + 2 = z 3 + 1 z 3 + ( z + 1 z ) z 3 + 1 z 3 = 2 z\quad can't\quad be\quad 0.\\ \\ just\quad multiply\quad both\quad side\quad by\quad z+\cfrac { 1 }{ z } \\ \\ \left( { z }^{ 2 }+\cfrac { 1 }{ { z }^{ 2 } } \right) +2={ z }^{ 3 }+\cfrac { 1 }{ { z }^{ 3 } } +\left( z+\cfrac { 1 }{ z } \right) \\ \\ { z }^{ 3 }+\cfrac { 1 }{ { z }^{ 3 } } =2

From Where do you get 2 ?

Phearum O - 6 years, 6 months ago

Log in to reply

because

z 2 + 1 z 2 = z + 1 z ( g i v e n ) { z }^{ 2 }+\cfrac { 1 }{ { z }^{ 2 } } =z+\cfrac { 1 }{ z } \left( given \right)

Ayush Verma - 6 years, 6 months ago

Good one. Enjoyed it

Bharathi Rao - 6 years, 5 months ago

Beautiful solution!

Roy Tu - 6 years, 5 months ago

Siimple and beautiful, i'm just wondering if the z + 1/z < 0 constraint is really necessary for us to come to the solution.

Michele Franzoni - 2 years, 1 month ago
Christopher Boo
Nov 19, 2014

Before I begin my solution, let me explain what's so special about z + 1 z z+\frac{1}{z} .

First, consider the equation

z + 1 z = 2 cos θ z+\frac{1}{z}=2\cos \theta

Solve for z z , we get

z = cos θ + i sin θ z=\cos\theta + i\sin \theta

Looks familiar? Yes, it is the well-known DeMoivre's Theorem !

Hence, for any integer n n , we have

z n + 1 z n = 2 cos n θ z^n+\frac{1}{z^n}=2\cos {n\theta}


Using the method stated above,

z + 1 z = z 2 + 1 z 2 z+\frac{1}{z}=z^2+\frac{1}{z^2}

2 cos θ = 2 cos 2 θ 2\cos \theta = 2\cos{2\theta}

Solve the equation we will get

θ = 12 0 \theta=120^\circ

*Note that the solution θ = 0 \theta=0^\circ is not suitable in this case.

Substitute to the expression

z 3 + 1 z 3 = 2 cos 3 ( 12 0 ) z^3+\frac{1}{z^3}=2\cos{3(120^\circ)}

We get the desired answer 2 2 .

Moderator note:

Your solution makes the (unstated) assumption that z = 1 |z| = 1 .

What we actually have is z = R C i s θ z = R \cdot Cis \theta , and z n = R n \Cis n θ z^n = R^n \Cis n \theta . In order for z + 1 z = 2 cos θ z + \frac{1}{z} = 2 \cos \theta , we will require R = 1 R = 1 .

What was your motivation to take it as 2cos(theta)

A Former Brilliant Member - 6 years, 6 months ago

Log in to reply

I never just thought of it myself. I learned from somewhere else too.

Christopher Boo - 6 years, 6 months ago

Never thought of it this way ! Amazing solution ! :)

Keshav Tiwari - 6 years, 6 months ago
Adarsh Kumar
Nov 19, 2014

R e a r r a n g i n g t h e g i v e n t e r m s w e g e t : z z 2 = 1 z 2 1 z z ( 1 z ) = z ( 1 z ) z 3 W e c a n c a n c e l ( z ) a n d ( 1 z ) a s t h e y c a n t b e e q u a l t o z e r o a s z i s a c o m p l e x n u m b e r . z 3 = 1. 1 z 3 = 1. z 3 + 1 z 3 = 1 + 1 = 2 . Rearranging\ the\ given\ terms\ we\ get:\\ z-z^{2}=\dfrac{1}{z^{2}}-\dfrac{1}{z}\\ \Rightarrow\ z*(1-z)=\dfrac{z*(1-z)}{z^{3}}\\ We\ can\ cancel\ (z)\ and\ (1-z)\ as\ they\ can't\ be\ equal\ to\ zero\ as\ z\ is\ a\ \\complex\ number.\\ \Rightarrow\ z^{3}=1.\\ \Rightarrow\ \dfrac{1}{z^{3}}=1.\\ \Rightarrow\ z^{3}+\dfrac{1}{z^{3}}=1+1=\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{2}}}}}}}}}}}}}}}}}}.

This is true approach, but it mean z is also =1, in that case z+1/z will also be =2 which is >0 and not <0, hence answer does not satisfy this condition.

Rana Afaq - 6 years, 6 months ago
Sujoy Roy
Nov 19, 2014

z = ω z=\omega satisfies the given condition.

So, z 3 + 1 z 3 = ω 3 + 1 ω 3 = 1 + 1 = 2 z^3+\frac{1}{z^3} =\omega^3+\frac{1}{\omega^3}=1+1=\boxed{2}

Syauqi Ramadhan
Nov 19, 2014

It was so easy, u need a hawk eye to do this, just look at the sentence "If only it was as easy as z=1

So:

( 1 ) 3 + 1 ( 1 ) 3 = 1 + 1 = 2 (1)^3+\frac{1}{(1)^3}=1+1=\boxed{2}

z = 1 z=1 does not satisfy the given condition.

sujoy roy - 6 years, 6 months ago
Trevor Arashiro
Nov 19, 2014

Begin by factoring the equation to 0 = z ( z 1 ) 1 z 2 ( z 1 ) 0=z(z-1)-\frac{1}{z^2}(z-1)

0 = ( z 1 z 2 ) ( z 1 ) 0=(z-\frac{1}{z^2})(z-1)

we can disregard the (z-1) because the question states that z is complex. Thus we are looking at 0 = ( z 1 z 2 ) 0=(z-\dfrac{1}{z^2})

Multiplying both sides by z 1 2 z^{\frac{1}{2}} we get 0 = ( z 3 2 1 z 3 2 ) 0=(z^{\frac{3}{2}}-\dfrac{1}{z^{\frac{3}{2}}})

squaring both sides we get 0 = z 3 + 1 z 3 2 0=z^3+\dfrac{1}{z^3}-2

2 = z 3 + 1 z 3 \therefore \boxed{2}=z^3+\dfrac{1}{z^3}

Mustafa Embaby
Feb 10, 2015
  • z + 1 z = z 2 + 1 z 2 1 z+\frac{1}{z}=z^2+\frac{1}{z^2} \longrightarrow 1

Multiply Eq. 1 1 by z z :

  • z 2 + 1 = z 3 + 1 z 2 z^2+1=z^3+\frac{1}{z} \longrightarrow 2

Divide Eq. 1 1 by z z :

  • 1 + 1 z 2 = z + 1 z 3 3 1+\frac{1}{z^2}=z+\frac{1}{z^3} \longrightarrow 3

Adding 2 & 3 :

  • ( z 2 + 1 z 2 ) + 2 = ( z + 1 z ) + ( z 3 + 1 z 3 ) (z^2+\frac{1}{z^2})+2=(z+\frac{1}{z})+(z^3+\frac{1}{z^3}) ( z 3 + 1 z 3 ) = 2 \Rightarrow (z^3+\frac{1}{z^3})=\boxed{2}
Rick B
Dec 2, 2014

Let z + 1 z = z 2 + 1 z 2 = x z+\frac{1}{z} = z^2+\frac{1}{z^2} = x

We know that x = x 2 2 x 2 x 2 = 0 x = 1 ± 3 2 x = x^2-2 \implies x^2-x-2 = 0 \implies x = \frac{1\pm3}{2}

Since, according to the problem, x < 0 x<0 , we will take the negative root: x = 1 x = -1

Factorizing z 3 + 1 z 3 z^3+\frac{1}{z^3} (sum of cubes):

z 3 + 1 z 3 = ( z + 1 z ) ( z 2 1 + 1 z 2 ) = x ( x 1 ) = ( 2 ) = 2 z^3+\frac{1}{z^3} = \left(z+\frac{1}{z}\right)\left(z^2-1+\frac{1}{z^2}\right) = x(x-1) = -(-2) = \boxed{2}

Curtis Clement
Nov 22, 2014

rearrange the equation to obtain: Z^2 - Z = (1/Z) - (1/Z^2). The right hand side is equal to (Z^{2}-Z)/Z^3. Therefore, 1=1/z^3 and 1=Z^3. It follows that Z^3 + 1/Z^3 =2

Poly Srabanti
Nov 20, 2014

let, z=1 then, 1^3+1/1^3 =1+1 =2

Let z + 1 z = a z+\frac{1}{z}=a Then,after adding 2 2 to both sides of the vequation,we get: a + 2 = a 2 a 2 a 2 = 0 a+2=a^2\rightarrow\;a^2-a-2=0 Solving,we get a = 2 a=2 ,So: z + 1 z = 2 z 2 2 z 1 = 0 z+\frac{1}{z}=2\rightarrow\;z^2-2z-1=0 Solving this,we get z = 1 z=1 so z 3 + 1 z 3 = 1 3 + 1 1 3 = 2 z^3+\frac{1}{z^3}=1^3+\frac{1}{1^3}=\boxed{2}

This is the real solution. Good work & regards

Rana Afaq - 6 years, 6 months ago

let x+1/x=a,now adding 2 on both sides and then squaring will result x^2+1/x^2 +4(x+1/x)+6= a^2+4a+4,hence x^2+1/x^2 = a^2-2
as x+1/x=x^2+1/x^2 =a==> a^2-a-2=0,and a=2 (x+1/x)(x^2+1/x^2 )=a.a=4 x^3+1/x^3 +x+1/x=4,===> x^3+1/x^3 =2

Rana Afaq - 6 years, 6 months ago
Joey Dandan
Nov 20, 2014

let k = z + 1/z = z² + 1/z²

(z + 1/z)² = k²

z² + 2 + 1/z² = k²

rearranging:

(z² + 1/z² )+ 2 = k²

k + 2 = k²

k² - k = 2

next;

(z + 1/z)(z² + 1/z²) = z³ + 1/z + z + 1/z³ = (k)(k)

rearranging:

k² = (z³ + 1/z³) + (z + 1/z)

k² = (z³ + 1/z³) + k

k² - k = (z³ + 1/z³)

2 = (z³ + 1/z³)

ANSWER is "2".

Sanket Rai
Nov 19, 2014

Z is a cube root of unity.. And z≠1.z=w,w^2.. Place and solve.solution =2..

Chew-Seong Cheong
Nov 19, 2014

It is given that: z + 1 z = z 2 + 1 z 2 < 0 z+\dfrac {1}{z} = z^2 + \dfrac {1}{z^2} < 0

Consider ( z + 1 z ) 2 = z 2 + 2 + 1 z 2 = z + 1 z + 2 \left( z+\dfrac {1}{z} \right) ^2 = z^2+ 2 + \dfrac {1}{z^2} = z+\dfrac {1}{z} + 2

( z + 1 z ) 2 ( z + 1 z ) 2 = 0 \Rightarrow \left( z+\dfrac {1}{z} \right) ^2 - \left( z+\dfrac {1}{z} \right) - 2 = 0

( z + 1 z ) = 1 ± 1 + 8 2 = 1 ± 3 2 = 1 < 0 \Rightarrow \left( z+\dfrac {1}{z} \right) = \dfrac {1 \pm \sqrt{1+8}}{2} = \dfrac {1 \pm 3}{2} = -1 < 0

Now ( z + 1 z ) ( z 2 + 1 z 2 ) = z 3 + z + 1 z + 1 z 3 \left( z+\dfrac {1}{z} \right) \left( z^2+\dfrac {1}{z^2} \right) = z^3 + z+\dfrac {1}{z} + \dfrac {1}{z^3}

( 1 ) ( 1 ) = z 3 + 1 z 3 1 \Rightarrow (-1)(-1) = z^3 + \dfrac {1}{z^3} - 1

z 3 + 1 z 3 = ( 1 ) ( 1 ) + 1 = 2 \Rightarrow z^3 + \dfrac {1}{z^3} = (-1)(-1) +1 = \boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...