If only it's a power of 3

Geometry Level 5

2 3 sec 2 2 0 sin 2 1 0 3 \large 2\sqrt[3]{3\sec ^2 20^\circ \sin^2 10^\circ}

The expression above can be expressed in the form a + b sec 2 0 a+b\sec 20^\circ , where a a and b b are integers. What is the value of a + b a+b ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mamunur Rashid
Oct 31, 2016

Using, cos ( 3 x ) = 4 cos 3 x 3 cos x cos ( 6 0 ) = 4 cos 3 ( 2 0 ) 3 cos ( 2 0 ) = 1 2 Dividing with cos 3 ( 2 0 ) derives , sec 3 ( 2 0 ) = 8 6 sec 2 ( 2 0 ) . Now, starting with the given expression, 2 3 sec 2 ( 2 0 ) sin 2 ( 1 0 ) 3 = 2 3 sec 2 ( 2 0 ) 1 2 ( 1 cos ( 2 0 ) ) 3 = 2 3 3 2 ( sec 2 ( 2 0 ) sec ( 2 0 ) ) 3 = 12 sec 2 ( 2 0 ) 12 sec ( 2 0 ) 3 = sec 3 ( 2 0 ) + 12 sec 2 ( 2 0 ) 12 sec ( 2 0 ) sec 3 ( 2 0 ) 3 = ( 8 6 sec 2 ( 2 0 ) ) + 12 sec 2 ( 2 0 ) 12 sec ( 2 0 ) sec 3 ( 2 0 ) 3 = 8 12 sec ( 2 0 ) + 6 sec 2 ( 2 0 ) sec 3 ( 2 0 ) 3 = 2 3 3 ( 2 2 ) sec ( 2 0 ) + 3 ( 2 ) sec 2 ( 2 0 ) sec 3 ( 2 0 ) 3 = ( 2 sec 2 0 ) 3 3 = 2 sec 2 0 Therefore, a = 2 , b = 1 , a + b = 1 \begin{aligned}&{\text{Using, }}\cos (3x) = 4{\cos ^3}x - 3\cos x{\text{ }} \Rightarrow {\text{ }}\cos (60^\circ ) = 4{\cos ^3}(20^\circ ) - 3\cos (20^\circ ) = \frac{1}{2} \\&{\text{Dividing with }}{\cos ^3}(20^\circ ){\text{ derives , }}\boxed{{{\sec }^3}(20^\circ ) = 8 - 6{{\sec }^2}(20^\circ )}. \\&{\text{Now, starting with the given expression, }}\\&{\text{ }}2\sqrt[3]{{3{{\sec }^2}(20^\circ ){{\sin }^2}(10^\circ )}} \\&= 2\sqrt[3]{{3{{\sec }^2}(20^\circ ) \cdot \frac{1}{2}\left( {1 - \cos (20^\circ )} \right)}} \\&= \sqrt[3]{{{2^3} \cdot \frac{3}{2}\left( {{{\sec }^2}(20^\circ ) - \sec (20^\circ )} \right)}} \\&= \sqrt[3]{{12{{\sec }^2}(20^\circ ) - 12\sec (20^\circ )}} \\&= \sqrt[3]{{{{\sec }^3}(20^\circ ) + 12{{\sec }^2}(20^\circ ) - 12\sec (20^\circ ) - {{\sec }^3}(20^\circ )}} \\&= \sqrt[3]{{\left( {8 - 6{{\sec }^2}(20^\circ )} \right) + 12{{\sec }^2}(20^\circ ) - 12\sec (20^\circ ) - {{\sec }^3}(20^\circ )}} \\&= \sqrt[3]{{8 - 12\sec (20^\circ ) + 6{{\sec }^2}(20^\circ ) - {{\sec }^3}(20^\circ )}} \\&= \sqrt[3]{{{2^3} - 3({2^2})\sec (20^\circ ) + 3(2){{\sec }^2}(20^\circ ) - {{\sec }^3}(20^\circ )}} \\&= \sqrt[3]{{{{\left( {2 - \sec 20^\circ } \right)}^3}}} \\&= 2 - \sec 20^\circ \\&{\text{Therefore, }}a = 2{\text{ , }}b = - 1{\text{ , }}\therefore a+b = \boxed{\boxed{ 1}} \\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...