If only you could flip it...

Calculus Level 2

This integral is equal to A B ln C , A-B\ln C, where A , A, B , B, and C C are positive integers and C C is prime. What is A + B + C ? A+B+C\text{?} 0 3 2 x 3 x 2 + 9 d x \int_0^3\dfrac{2x^3}{x^2+9}\text{ }dx


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Trevor B.
Feb 13, 2014

Rewrite the integral like this. 0 3 2 x 3 x 2 + 9 d x = 0 3 2 x 3 + 18 x 18 x x 2 + 9 d x \int_0^3\dfrac{2x^3}{x^2+9}\text{ }dx=\int_0^3\dfrac{2x^3+18x-18x}{x^2+9}\text{ }dx This splits into two integrals that are easy to solve. 0 3 2 x 3 + 18 x 18 x x 2 + 9 d x = 0 3 2 x 3 + 18 x x 2 + 9 d x 0 3 18 x x 2 + 9 d x \int_0^3\dfrac{2x^3+18x-18x}{x^2+9}\text{ }dx=\int_0^3\dfrac{2x^3+18x}{x^2+9}\text{ }dx-\int_0^3\dfrac{18x}{x^2+9}\text{ }dx Solve for the indefinite integrals and then plug in 0 0 and 3. 3.

The first integral simplifies to this. 2 x d x = x 2 + C \int2x\text{ }dx=x^2+C The second integral can be solved with a u -substitution u\text{-substitution} for x 2 + 9. x^2+9. 18 x x 2 + 9 d x = 9 ln ( x 2 + 9 ) + C \int\dfrac{18x}{x^2+9}\text{ }dx=9\ln(x^2+9)+C So overall, the integral is equal to this. 2 x 3 + 18 x x 2 + 9 d x 18 x x 2 + 9 d x = x 2 9 ln ( x 2 + 9 ) + C \int\dfrac{2x^3+18x}{x^2+9}\text{ }dx-\int\dfrac{18x}{x^2+9}\text{ }dx=x^2-9\ln(x^2+9)+C Now plug in 0 0 and 3. 3. 0 3 2 x 3 + 18 x x 2 + 9 d x 0 3 18 x x 2 + 9 d x = x 2 9 ln ( x 2 + 9 ) ] 0 3 \int_0^3\dfrac{2x^3+18x}{x^2+9}\text{ }dx-\int_0^3\dfrac{18x}{x^2+9}\text{ }dx=\left.x^2-9\ln(x^2+9)\right]^3_0 This is equal to 9 9 ln 18 0 + ln 9 = 9 9 ln 2. 9-9\ln18-0+\ln9=9-9\ln2. Therefore, A = 9 , A=9, B = 9 , B=9, and C = 2. C=2. A + B + C = 20 A+B+C=\boxed{20}

9 - 9 ln (18) - 0 + 9 ln (9)* (you forgot the last 9 factor)

Adel El Bachari - 7 years, 2 months ago
Mayank Holmes
May 20, 2014

put z= (x) ^ 2 ......... rest is simple integration!

Rishabh Chhabda
Apr 29, 2014

Substituting x 2 + 9 = t x^{2} + 9 = t x 2 = t 9 x^{2} = t-9 Then 2 x d x = d t 2xdx = dt 2 x 3 d x = x 2 d t 2x^{3}dx = x^{2}dt 2 x 3 d x = ( t 9 ) d t 2x^{3}dx = (t-9)dt 0 3 2 x 3 x 2 + 9 = 9 18 t 9 t d t = [ t 9 ln t ] 9 18 \int _{ 0 }^{ 3 }{ \frac { 2{ x }^{ 3 } }{ { x }^{ 2 }+9 } \quad =\quad \int _{ 9 }^{ 18 }{ \frac { t-9 }{ t } } } dt\quad =\quad { \left[ t-9\ln { t } \right] }_{ 9 }^{ 18 }\\ Solving we get integral = 9 - 9ln2; A=9; B=9; C=2 Hence A +B+ C = 20

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...