Find 9A

Algebra Level pending

If the maximum value of sin 2 x 19 sin 2 x + 10 cos 2 x + 6 \dfrac {\sin 2x}{\sqrt{19\sin^2 x+10 \cos^2 x+6}} is A A , find 9 A 9A .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 22, 2020

Let f ( x ) f(x) be the given function. Then

f ( x ) = sin 2 x 19 sin 2 x + 10 cos 2 x + 6 Since sin 2 θ + cos 2 θ = 1 = sin 2 x 9 sin 2 x + 16 and sin 2 θ = 1 cos 2 θ 2 = 2 sin 2 x 41 9 cos 2 x d f ( x ) d x = 2 2 cos 2 x 41 9 cos 2 x 9 2 sin 2 2 x ( 41 9 cos 2 x ) 3 2 = 2 2 cos 2 x ( 41 9 cos 2 x ) 9 2 sin 2 2 x ( 41 9 cos 2 x ) 3 2 \begin{aligned} f(x) & = \frac {\sin 2x}{\sqrt{19\sin^2 x + 10 \cos^2 x +6}} & \small \blue{\text{Since }\sin^2 \theta + \cos^2 \theta = 1} \\ & = \frac {\sin 2x}{\sqrt{9\sin^2 x + 16}} & \small \blue{\text{and }\sin^2 \theta = \frac {1-\cos 2\theta}2} \\ & = \frac {\sqrt 2 \sin 2x}{\sqrt{41-9\cos 2x}} \\ \frac {df(x)}{dx} & = \frac {2 \sqrt 2 \cos 2 x}{\sqrt{41-9\cos 2x}} - \frac {9\sqrt 2 \sin^2 2x}{(41-9\cos 2x)^\frac 32} \\ & = \frac {2 \sqrt 2 \cos 2x (41-9\cos 2x) - 9\sqrt 2 \sin^2 2x}{(41-9\cos 2x)^\frac 32} \end{aligned}

Putting d f ( x ) d x = 0 \dfrac {df(x)}{dx} = 0 ,

82 cos 2 x 18 cos 2 2 x 9 sin 2 2 x = 0 Since sin 2 θ + cos 2 θ = 1 9 cos 2 2 x 82 cos 2 x + 9 = 0 ( 9 cos 2 x 1 ) ( cos 2 x 9 ) = 0 cos 2 x = 1 9 Since cos θ 1 \begin{aligned} 82 \cos 2x - 18 \cos^2 2x - 9 \sin^2 2x & = 0 & \small \blue{\text{Since }\sin^2 \theta + \cos^2 \theta = 1} \\ 9 \cos^2 2x - 82 \cos 2x + 9 & = 0 \\ (9\cos 2x - 1) (\cos 2x - 9) & = 0 \\ \implies \cos 2x & = \frac 19 & \small \blue{\text{Since }|\cos \theta| \le 1} \end{aligned}

When cos 2 x = 1 9 \cos 2x = \dfrac 19 , sin 2 x = ± 4 5 9 \implies \sin 2x = \pm \dfrac {4\sqrt 5}9 . SInce f ( x ) f(x) is periodical, f ( x ) f(x) is maximum when sin 2 x = 80 9 \sin 2x = \dfrac {\sqrt {80}}9 and minimum when sin 2 x = 4 5 9 \sin 2x = - \dfrac {4\sqrt 5}9 . Therefore,

A = max ( f ( x ) ) = 2 sin 2 x 41 9 cos 2 x sin 2 x = 80 9 = 160 9 40 = 2 9 \begin{aligned} A & = \max(f(x)) = \frac {\sqrt 2 \sin 2x}{\sqrt{41-9\cos 2x}}\bigg|_{\sin 2x = \frac {\sqrt{80}}9} = \frac {\sqrt{160}}{9\sqrt{40}} = \frac 29 \end{aligned}

Therefore 9 A = 2 9A = \boxed 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...