Summing Ratio of Integers Over Their Digital Sums

Algebra Level 5

100 1 + 0 + 0 + 101 1 + 0 + 1 + + a b c a + b + c + + 998 9 + 9 + 8 + 999 9 + 9 + 9 = ? \dfrac{ 100} { 1 + 0 + 0 } + \dfrac{ 101 } {1 + 0 + 1 } + \cdots + \dfrac{ \overline{abc} } { a + b + c } + \cdots + \dfrac{ 998 } { 9 + 9 + 8 } + \dfrac{ 999 } { 9 + 9 + 9 } = \, ?


The answer is 36418.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mahan Farzan
Sep 1, 2016

We divide the three digit numbers into 6 groups, depending on how many zeroes and repeated digits they have.

Case 1. No zeroes, no repeated digits.

a b c a + b + c + a c b a + b + c + b c a a + b + c + b a c a + b + c + c a b a + b + c + c b a a + b + c = 222 ( a + b + c ) a + b + c = 222 \frac{ \overline{abc} } { a+b+c } + \frac{ \overline{acb} } { a+b+c } + \frac{ \overline{bca} } { a+b+c } + \frac{ \overline{bac} } { a+b+c } + \frac{ \overline{cab} } { a+b+c } + \frac{ \overline{cba} } { a+b+c } = \frac{ 222 ( a + b + c ) } { a+b+ c } = 222

There are ( 9 3 ) { 9 \choose 3 } possible ways to choose these numbers, so their sum is ( 9 3 ) × 222 = 18648 { 9 \choose 3 } \times 222 = 18648 .

Case 2: No zeroes, only 2 repeated digits

a a b a + a + b + a b a a + a + b + b a a a + a + b = 111 ( 2 a + b ) 2 a + b = 111 \frac{ \overline{aab} } { a+a+b } + \frac{ \overline{aba} } { a+a+b } + \frac{ \overline{baa} } { a+a+b } = \frac{ 111 ( 2a + b ) } { 2a + b } = 111

There are 9 × 8 9 \times 8 possible ways to choose these numbers, so their sum if 9 × 8 × 111 = 7992 9 \times 8 \times 111 = 7992 .

Case 3: No zeroes, all 3 repeated digits.

a a a a + a + a = 111 × a 3 a = 37 \frac{ \overline{aaa} } { a + a + a } = \frac{ 111 \times a } { 3a } = 37

Since there are 9 possible ways, their sum is 9 × 37 = 333 9 \times 37 = 333 .

Case 4: 1 zero, two distinct non-zero digit

a b 0 a + b + 0 + a 0 b a + b + 0 + b a 0 a + b + 0 + b 0 a a + b + 0 = 211 ( a + b ) a + b = 211 \frac{ \overline{ab0} } { a+b+0 } + \frac{ \overline{a0b} } { a+b+0 } + \frac{ \overline{ba0} } { a+b+0 } +\frac{ \overline{b0a} } { a+b+0 } = \frac{ 211 ( a + b) } { a+ b } = 211

Since there are ( 9 2 ) { 9 \choose 2 } ways to choose these numbers, so their sum is ( 9 2 ) × 277 = 7596 { 9 \choose 2 } \times 277 = 7596 .

Case 5: 1 zero, two repeated non-zero digit

a a 0 a + a + 0 + a 0 a a + a + 0 = 211 a 2 a = 105.5 \frac{ \overline{aa0} } { a+a+0 } + \frac{ \overline{a0a} } { a+a+0 } = \frac{ 211 a } { 2a } = 105.5

There are 9 ways to choose these numbers, so their sum is 9 × 105.5 = 949.5 9 \times 105.5 = 949.5 .

Case 6: two zeros, one non-zero digit

a 00 a + 0 + 0 = 100 \frac{ \overline{a00}} { a + 0 + 0 } = 100

There are 9 ways to choose these numbers, so their sum is 9 × 100 = 900 9 \times 100 = 900 .

Summing up these 6 cases, we find that the sum is 36418.5

Excellent Question. I also solved it almost like you.

Kushagra Sahni - 4 years, 9 months ago

The sum is wrong! It must be 36418.5.

Andreas Wendler - 4 years, 8 months ago

Log in to reply

Thanks. I fixed the typo in the solution.

Chung Kevin - 4 years, 8 months ago
Anand Raj
Mar 26, 2020

Ok, So there are two types of solution. One is discussed above already by Mahan Farzan.

I'd like to discuss another method that takes a bit of thinking but make our lives much easier.

We can rewrite the above equation as

{ a = 0 9 b = 0 9 c = 0 9 ( 100 a + 10 b + c a + b + c ) f 3 ( 0 , 0 , 0 ) } { b = 0 9 c = 0 9 ( 10 b + c b + c ) f 2 ( 0 , 0 ) } \left \{\sum_{a=0}^{9} \sum_{b=0}^{9} \sum_{c=0}^{9} \left(\frac{100a+10b+c}{a+b+c} \right ) -f_{3}(0,0,0) \right \} - \left \{ \sum_{b=0}^{9} \sum_{c=0}^{9} \left(\frac{10b+c}{b+c}\right ) -f_{2}(0,0)\right \}

Here f 3 ( 0 , 0 , 0 ) f_{3} (0,0,0) is the value when a = 0 , b = 0 , c = 0 a=0, b=0, c=0 . For that we can use the limit to find the value of 100 a + 10 b + c a + b + c = 111 a 3 a = 37 \frac{100a+10b+c}{a+b+c} = \frac{111a}{3a} = 37 .
Similarly f 2 ( 0 , 0 ) = 11 b 2 b = 5.5 f_{2}(0,0) = \frac{11b}{2b} = 5.5 .

Now coming to the main part, The triple summation. It's clearly symmetric in a , b a, b and c c . Thus there are 6 other similar permutations. Adding them together,

6 a = 0 9 b = 0 9 c = 0 9 ( 100 a + 10 b + c a + b + c ) = a = 0 9 b = 0 9 c = 0 9 ( 222 a + 222 b + 222 c a + b + c ) = a = 0 9 b = 0 9 c = 0 9 222 = 222000 6\sum_{a=0}^{9} \sum_{b=0}^{9} \sum_{c=0}^{9} \left(\frac{100a+10b+c}{a+b+c} \right ) = \sum_{a=0}^{9} \sum_{b=0}^{9} \sum_{c=0}^{9} \left(\frac{222a+222b+222c}{a+b+c} \right ) = \sum_{a=0}^{9} \sum_{b=0}^{9} \sum_{c=0}^{9} 222 = 222000

Thus, a = 0 9 b = 0 9 c = 0 9 ( 100 a + 10 b + c a + b + c ) = 37000 \sum_{a=0}^{9} \sum_{b=0}^{9} \sum_{c=0}^{9} \left(\frac{100a+10b+c}{a+b+c} \right ) = 37000 .

Similarly, 2 b = 0 9 c = 0 9 ( 10 b + c b + c ) = b = 0 9 c = 0 9 ( 11 b + 11 c b + c ) = b = 0 9 c = 0 9 11 = 1100 2\sum_{b=0}^{9} \sum_{c=0}^{9} \left(\frac{10b+c}{b+c}\right ) = \sum_{b=0}^{9} \sum_{c=0}^{9} \left(\frac{11b+11c}{b+c}\right ) = \sum_{b=0}^{9} \sum_{c=0}^{9}11 = 1100

Thus, b = 0 9 c = 0 9 ( 10 b + c b + c ) = 550 \sum_{b=0}^{9} \sum_{c=0}^{9} \left(\frac{10b+c}{b+c}\right ) = 550 .

Thus The net sum is, { 37000 37 } { 550 5.5 } = 36450 31.5 = 36418.5 \left\{37000-37\right\} - \left\{550-5.5\right\} = 36450 - 31.5 = 36418.5 .

Abdelhamid Saadi
Nov 10, 2016

Can we figure out a generalized solution for this?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...